Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation

Flavonoid synthesis is predominantly regulated at the transcriptional level through the MYB–basic helix-loop-helix (bHLH)–WD40 (MBW) (MYB: transcription factor of the myeloblastosis protein family,WD40: tanscription factor with a short structural motif of 40 amino acids which terminates in an aspart...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2016-08, Vol.211 (3), p.912-925
Hauptverfasser: Petridis, Antonios, Döll, Stefanie, Nichelmann, Lars, Bilger, Wolfgang, Mock, Hans‐Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 925
container_issue 3
container_start_page 912
container_title The New phytologist
container_volume 211
creator Petridis, Antonios
Döll, Stefanie
Nichelmann, Lars
Bilger, Wolfgang
Mock, Hans‐Peter
description Flavonoid synthesis is predominantly regulated at the transcriptional level through the MYB–basic helix-loop-helix (bHLH)–WD40 (MBW) (MYB: transcription factor of the myeloblastosis protein family,WD40: tanscription factor with a short structural motif of 40 amino acids which terminates in an aspartic acid–tryptophan dipeptide) complex, and responds to both environmental and developmental stimuli. Although the developmental regulation of flavonoid accumulation in Arabidopsis thaliana has been examined in great detail, the response of the flavonoid synthesis pathway to abiotic stress (particularly low temperature) remains unclear. A screen of a Dissociation element (Ds) transposon-induced mutation collection identified two lines which exhibited an altered profile of phenylpropanoid accumulation following exposure to low-temperature stress. One of the mutated genes (BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1)) encoded a brassinosteroid enhanced expression transcription factor, while the other (G2-LIKE FLAVONOID REGULATOR (GFR)) encoded a G2-like flavonoid regulator. Phenylpropanoid-targeted analysis was performed using high-performance LC-MS, and gene expression analysis using quantitative reverse transcription–PCR. In both mutants, the accumulation of quercetins and scopolin was reduced under lowtemperature growing conditions, whereas that of anthocyanin was increased. BEE1 and GFR were both shown to negatively regulate anthocyanin accumulation by inhibiting anthocyanin synthesis genes via the suppression of the bHLH (TRANSPARENT TESTA8 (TT8) and GLABROUS3 (GL3)) and/or the MYB (PRODUCTION OF ANTHOCYANIN PIGMENTS2 (PAP2)) components of the MBW complex. Our results provide new insight into the regulatory control of phenylpropanoid metabolism at low temperatures, and reveal that BEE1 and GFR act as important components of the signal transduction chain.
doi_str_mv 10.1111/nph.13986
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808646654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.211.3.912</jstor_id><sourcerecordid>newphytologist.211.3.912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4596-1cceac9f23662009b47db1cae87cdbff0f7064afc767aaadf4884139d1b0c3083</originalsourceid><addsrcrecordid>eNqNkdFu0zAUhi0EYmVwwQsgS9zARTbbSZzkMpSsrYiSKe3Q7iLHsddUSRzshKqvwRPj0G0XSEj4xrb-7_w65_wAvMfoCttz3Q_7K-xGIX0BFtijkRNiN3gJFgiR0KEevb8Ab4w5IIQin5LX4IIEmPiEoAX4FWtWNbUaTGPguGdtw3oGV8RJN98SeJPG3_Ms33yFRbK6S-NdXkDW1_BLEW-3myzf7pJiVpNsHWfLxD7ub4vESnmGIdMCturojKIbhGbjZP9aPEwtG5U2UEkoW_ZT9aqpIeN86malUf1b8Eqy1oh3j_cluLtJdsu1k-arzTJOHe75EXUw54LxSBKXUmInq7ygrjBnIgx4XUmJZICoxyQPaMAYq6UXhp7dUo0rxF0Uupfg09l30OrHJMxYdo3hom1ZL9RkShyi0C6P-t7_oK7nk8CfXT_-hR7UpHs7yEwRGgUkmA0_nymulTFayHLQTcf0qcSonDMtbabln0wt--HRcao6UT-TTyFa4PoMHJtWnP7tVGa36ydL51xxMDaL54peHIf9aVStemhs48QWu2WEifsb_jq4YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802697274</pqid></control><display><type>article</type><title>Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation</title><source>Jstor Complete Legacy</source><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Petridis, Antonios ; Döll, Stefanie ; Nichelmann, Lars ; Bilger, Wolfgang ; Mock, Hans‐Peter</creator><creatorcontrib>Petridis, Antonios ; Döll, Stefanie ; Nichelmann, Lars ; Bilger, Wolfgang ; Mock, Hans‐Peter</creatorcontrib><description>Flavonoid synthesis is predominantly regulated at the transcriptional level through the MYB–basic helix-loop-helix (bHLH)–WD40 (MBW) (MYB: transcription factor of the myeloblastosis protein family,WD40: tanscription factor with a short structural motif of 40 amino acids which terminates in an aspartic acid–tryptophan dipeptide) complex, and responds to both environmental and developmental stimuli. Although the developmental regulation of flavonoid accumulation in Arabidopsis thaliana has been examined in great detail, the response of the flavonoid synthesis pathway to abiotic stress (particularly low temperature) remains unclear. A screen of a Dissociation element (Ds) transposon-induced mutation collection identified two lines which exhibited an altered profile of phenylpropanoid accumulation following exposure to low-temperature stress. One of the mutated genes (BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1)) encoded a brassinosteroid enhanced expression transcription factor, while the other (G2-LIKE FLAVONOID REGULATOR (GFR)) encoded a G2-like flavonoid regulator. Phenylpropanoid-targeted analysis was performed using high-performance LC-MS, and gene expression analysis using quantitative reverse transcription–PCR. In both mutants, the accumulation of quercetins and scopolin was reduced under lowtemperature growing conditions, whereas that of anthocyanin was increased. BEE1 and GFR were both shown to negatively regulate anthocyanin accumulation by inhibiting anthocyanin synthesis genes via the suppression of the bHLH (TRANSPARENT TESTA8 (TT8) and GLABROUS3 (GL3)) and/or the MYB (PRODUCTION OF ANTHOCYANIN PIGMENTS2 (PAP2)) components of the MBW complex. Our results provide new insight into the regulatory control of phenylpropanoid metabolism at low temperatures, and reveal that BEE1 and GFR act as important components of the signal transduction chain.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.13986</identifier><identifier>PMID: 27125220</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Anthocyanins - metabolism ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis - radiation effects ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; basic helix‐loop‐helix (bHLH) ; BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1) (At1g18400) ; cold stress ; Cold Temperature ; flavonoids ; Flavonoids - metabolism ; G2‐LIKE FLAVONOID REGULATOR (GFR) (At5g45580) ; Gene Expression Regulation, Plant - radiation effects ; Genes, Plant ; Light ; Models, Biological ; Mutation - genetics ; Propanols - metabolism ; regulation ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; scopolin ; Transcription, Genetic - radiation effects</subject><ispartof>The New phytologist, 2016-08, Vol.211 (3), p.912-925</ispartof><rights>2016 New Phytologist Trust</rights><rights>2016 The Authors. New Phytologist © 2016 New Phytologist Trust</rights><rights>2016 The Authors. New Phytologist © 2016 New Phytologist Trust.</rights><rights>Copyright © 2016 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4596-1cceac9f23662009b47db1cae87cdbff0f7064afc767aaadf4884139d1b0c3083</citedby><cites>FETCH-LOGICAL-c4596-1cceac9f23662009b47db1cae87cdbff0f7064afc767aaadf4884139d1b0c3083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.211.3.912$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.211.3.912$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27125220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petridis, Antonios</creatorcontrib><creatorcontrib>Döll, Stefanie</creatorcontrib><creatorcontrib>Nichelmann, Lars</creatorcontrib><creatorcontrib>Bilger, Wolfgang</creatorcontrib><creatorcontrib>Mock, Hans‐Peter</creatorcontrib><title>Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Flavonoid synthesis is predominantly regulated at the transcriptional level through the MYB–basic helix-loop-helix (bHLH)–WD40 (MBW) (MYB: transcription factor of the myeloblastosis protein family,WD40: tanscription factor with a short structural motif of 40 amino acids which terminates in an aspartic acid–tryptophan dipeptide) complex, and responds to both environmental and developmental stimuli. Although the developmental regulation of flavonoid accumulation in Arabidopsis thaliana has been examined in great detail, the response of the flavonoid synthesis pathway to abiotic stress (particularly low temperature) remains unclear. A screen of a Dissociation element (Ds) transposon-induced mutation collection identified two lines which exhibited an altered profile of phenylpropanoid accumulation following exposure to low-temperature stress. One of the mutated genes (BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1)) encoded a brassinosteroid enhanced expression transcription factor, while the other (G2-LIKE FLAVONOID REGULATOR (GFR)) encoded a G2-like flavonoid regulator. Phenylpropanoid-targeted analysis was performed using high-performance LC-MS, and gene expression analysis using quantitative reverse transcription–PCR. In both mutants, the accumulation of quercetins and scopolin was reduced under lowtemperature growing conditions, whereas that of anthocyanin was increased. BEE1 and GFR were both shown to negatively regulate anthocyanin accumulation by inhibiting anthocyanin synthesis genes via the suppression of the bHLH (TRANSPARENT TESTA8 (TT8) and GLABROUS3 (GL3)) and/or the MYB (PRODUCTION OF ANTHOCYANIN PIGMENTS2 (PAP2)) components of the MBW complex. Our results provide new insight into the regulatory control of phenylpropanoid metabolism at low temperatures, and reveal that BEE1 and GFR act as important components of the signal transduction chain.</description><subject>Anthocyanins - metabolism</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - radiation effects</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>basic helix‐loop‐helix (bHLH)</subject><subject>BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1) (At1g18400)</subject><subject>cold stress</subject><subject>Cold Temperature</subject><subject>flavonoids</subject><subject>Flavonoids - metabolism</subject><subject>G2‐LIKE FLAVONOID REGULATOR (GFR) (At5g45580)</subject><subject>Gene Expression Regulation, Plant - radiation effects</subject><subject>Genes, Plant</subject><subject>Light</subject><subject>Models, Biological</subject><subject>Mutation - genetics</subject><subject>Propanols - metabolism</subject><subject>regulation</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>scopolin</subject><subject>Transcription, Genetic - radiation effects</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkdFu0zAUhi0EYmVwwQsgS9zARTbbSZzkMpSsrYiSKe3Q7iLHsddUSRzshKqvwRPj0G0XSEj4xrb-7_w65_wAvMfoCttz3Q_7K-xGIX0BFtijkRNiN3gJFgiR0KEevb8Ab4w5IIQin5LX4IIEmPiEoAX4FWtWNbUaTGPguGdtw3oGV8RJN98SeJPG3_Ms33yFRbK6S-NdXkDW1_BLEW-3myzf7pJiVpNsHWfLxD7ub4vESnmGIdMCturojKIbhGbjZP9aPEwtG5U2UEkoW_ZT9aqpIeN86malUf1b8Eqy1oh3j_cluLtJdsu1k-arzTJOHe75EXUw54LxSBKXUmInq7ygrjBnIgx4XUmJZICoxyQPaMAYq6UXhp7dUo0rxF0Uupfg09l30OrHJMxYdo3hom1ZL9RkShyi0C6P-t7_oK7nk8CfXT_-hR7UpHs7yEwRGgUkmA0_nymulTFayHLQTcf0qcSonDMtbabln0wt--HRcao6UT-TTyFa4PoMHJtWnP7tVGa36ydL51xxMDaL54peHIf9aVStemhs48QWu2WEifsb_jq4YQ</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Petridis, Antonios</creator><creator>Döll, Stefanie</creator><creator>Nichelmann, Lars</creator><creator>Bilger, Wolfgang</creator><creator>Mock, Hans‐Peter</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20160801</creationdate><title>Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation</title><author>Petridis, Antonios ; Döll, Stefanie ; Nichelmann, Lars ; Bilger, Wolfgang ; Mock, Hans‐Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4596-1cceac9f23662009b47db1cae87cdbff0f7064afc767aaadf4884139d1b0c3083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anthocyanins - metabolism</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - radiation effects</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>basic helix‐loop‐helix (bHLH)</topic><topic>BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1) (At1g18400)</topic><topic>cold stress</topic><topic>Cold Temperature</topic><topic>flavonoids</topic><topic>Flavonoids - metabolism</topic><topic>G2‐LIKE FLAVONOID REGULATOR (GFR) (At5g45580)</topic><topic>Gene Expression Regulation, Plant - radiation effects</topic><topic>Genes, Plant</topic><topic>Light</topic><topic>Models, Biological</topic><topic>Mutation - genetics</topic><topic>Propanols - metabolism</topic><topic>regulation</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>scopolin</topic><topic>Transcription, Genetic - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petridis, Antonios</creatorcontrib><creatorcontrib>Döll, Stefanie</creatorcontrib><creatorcontrib>Nichelmann, Lars</creatorcontrib><creatorcontrib>Bilger, Wolfgang</creatorcontrib><creatorcontrib>Mock, Hans‐Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petridis, Antonios</au><au>Döll, Stefanie</au><au>Nichelmann, Lars</au><au>Bilger, Wolfgang</au><au>Mock, Hans‐Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>211</volume><issue>3</issue><spage>912</spage><epage>925</epage><pages>912-925</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Flavonoid synthesis is predominantly regulated at the transcriptional level through the MYB–basic helix-loop-helix (bHLH)–WD40 (MBW) (MYB: transcription factor of the myeloblastosis protein family,WD40: tanscription factor with a short structural motif of 40 amino acids which terminates in an aspartic acid–tryptophan dipeptide) complex, and responds to both environmental and developmental stimuli. Although the developmental regulation of flavonoid accumulation in Arabidopsis thaliana has been examined in great detail, the response of the flavonoid synthesis pathway to abiotic stress (particularly low temperature) remains unclear. A screen of a Dissociation element (Ds) transposon-induced mutation collection identified two lines which exhibited an altered profile of phenylpropanoid accumulation following exposure to low-temperature stress. One of the mutated genes (BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1)) encoded a brassinosteroid enhanced expression transcription factor, while the other (G2-LIKE FLAVONOID REGULATOR (GFR)) encoded a G2-like flavonoid regulator. Phenylpropanoid-targeted analysis was performed using high-performance LC-MS, and gene expression analysis using quantitative reverse transcription–PCR. In both mutants, the accumulation of quercetins and scopolin was reduced under lowtemperature growing conditions, whereas that of anthocyanin was increased. BEE1 and GFR were both shown to negatively regulate anthocyanin accumulation by inhibiting anthocyanin synthesis genes via the suppression of the bHLH (TRANSPARENT TESTA8 (TT8) and GLABROUS3 (GL3)) and/or the MYB (PRODUCTION OF ANTHOCYANIN PIGMENTS2 (PAP2)) components of the MBW complex. Our results provide new insight into the regulatory control of phenylpropanoid metabolism at low temperatures, and reveal that BEE1 and GFR act as important components of the signal transduction chain.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>27125220</pmid><doi>10.1111/nph.13986</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2016-08, Vol.211 (3), p.912-925
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_1808646654
source Jstor Complete Legacy; Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Anthocyanins - metabolism
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis - radiation effects
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
basic helix‐loop‐helix (bHLH)
BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1) (At1g18400)
cold stress
Cold Temperature
flavonoids
Flavonoids - metabolism
G2‐LIKE FLAVONOID REGULATOR (GFR) (At5g45580)
Gene Expression Regulation, Plant - radiation effects
Genes, Plant
Light
Models, Biological
Mutation - genetics
Propanols - metabolism
regulation
RNA, Messenger - genetics
RNA, Messenger - metabolism
scopolin
Transcription, Genetic - radiation effects
title Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabidopsis%20thaliana%20G2-LIKE%20FLAVONOID%20REGULATOR%20and%20BRASSINOSTEROID%20ENHANCED%20EXPRESSION1%20are%20low-temperature%20regulators%20of%20flavonoid%20accumulation&rft.jtitle=The%20New%20phytologist&rft.au=Petridis,%20Antonios&rft.date=2016-08-01&rft.volume=211&rft.issue=3&rft.spage=912&rft.epage=925&rft.pages=912-925&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.13986&rft_dat=%3Cjstor_proqu%3Enewphytologist.211.3.912%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1802697274&rft_id=info:pmid/27125220&rft_jstor_id=newphytologist.211.3.912&rfr_iscdi=true