Geographic independence and phylogenetic diversity of red shiner introductions
Identifying areas at risk of invasion can be difficult when the distribution of a non-native species encompasses geographically disjunct regions. Understanding genealogical relationships among native and non-native populations can clarify the origins of fragmented distributions, which in turn can cl...
Gespeichert in:
Veröffentlicht in: | Conservation genetics 2016-08, Vol.17 (4), p.795-809 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 809 |
---|---|
container_issue | 4 |
container_start_page | 795 |
container_title | Conservation genetics |
container_volume | 17 |
creator | Glotzbecker, Gregory J Fernando Alda Richard E. Broughton David A. Neely Richard L. Mayden Michael J. Blum |
description | Identifying areas at risk of invasion can be difficult when the distribution of a non-native species encompasses geographically disjunct regions. Understanding genealogical relationships among native and non-native populations can clarify the origins of fragmented distributions, which in turn can clarify how fast and far a non-native species may spread. We evaluated genetic variation across the native and invasive ranges of red shiner (Cyprinella lutrensis), a minnow known to displace and hybridize with native species, to reconstruct invasion pathways across the United States (USA). Examination of mitochondrial cytochrome-b variation found that native range populations of red shiner fall into four highly divergent lineages that likely warrant species recognition. Introduced red shiner populations in the eastern and western USA are derived from only two of these lineages. Western USA populations originate from the mid-western and western genetic lineages, whereas eastern introductions derive only from the mid-western lineage. Western USA invasive populations exhibit fewer, but more diverse haplotypes compared to eastern USA invasive populations. We also recovered an undescribed, divergent lineage of Cyprinella that has been cryptically introduced into the western USA, which raises the possibility that hybridization has proceeded following secondary contact between previously allopatric lineages. Approximate Bayesian Computation modeling suggests that the disjunct distribution of red shiner across North America is an agglomeration of independent regional invasions with distinct origins, rather than stepwise advance of an invasion front or secondary introductions across regions. Thus localized control may be effective in managing non-native red shiner, including further spread to areas of conservation concern. |
doi_str_mv | 10.1007/s10592-016-0822-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808646033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808646033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-1efd69c2c80c1482793513eccecd6b66a252cb494015466114ca0abddf2f36a63</originalsourceid><addsrcrecordid>eNp9kbFOwzAQhiMEEqXwAExEYmEJ-OzESUZUQUFCMEBny7UvqavWDnaC1LfHURgQA4t90n3f6fw7SS6B3AIh5V0AUtQ0I8AzUlGa1UfJDIoyFiUrj8eaxw6ncJqchbAlEaQlzJLXJbrWy25jVGqsxg7jYRWm0uq02xx2rkWLfexq84U-mP6Quib1qNOwMRZ9tHrv9KB642w4T04auQt48XPPk9Xjw8fiKXt5Wz4v7l8yxUrWZ4CN5rWiqiIK8oqWNSuAoVKoNF9zLmlB1TqvcwJFzjlAriSRa60b2jAuOZsnN9PczrvPAUMv9iYo3O2kRTcEARWpeM4JYxG9_oNu3eBt3G6kSE1ZzkcKJkp5F4LHRnTe7KU_CCBiTFhMCYsYnBgTFnV06OSEyNoW_a_J_0hXk9RIJ2TrTRCrdxqB-CVVfG3BvgHzWIdd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800923463</pqid></control><display><type>article</type><title>Geographic independence and phylogenetic diversity of red shiner introductions</title><source>Springer Nature - Complete Springer Journals</source><creator>Glotzbecker, Gregory J ; Fernando Alda ; Richard E. Broughton ; David A. Neely ; Richard L. Mayden ; Michael J. Blum</creator><creatorcontrib>Glotzbecker, Gregory J ; Fernando Alda ; Richard E. Broughton ; David A. Neely ; Richard L. Mayden ; Michael J. Blum</creatorcontrib><description>Identifying areas at risk of invasion can be difficult when the distribution of a non-native species encompasses geographically disjunct regions. Understanding genealogical relationships among native and non-native populations can clarify the origins of fragmented distributions, which in turn can clarify how fast and far a non-native species may spread. We evaluated genetic variation across the native and invasive ranges of red shiner (Cyprinella lutrensis), a minnow known to displace and hybridize with native species, to reconstruct invasion pathways across the United States (USA). Examination of mitochondrial cytochrome-b variation found that native range populations of red shiner fall into four highly divergent lineages that likely warrant species recognition. Introduced red shiner populations in the eastern and western USA are derived from only two of these lineages. Western USA populations originate from the mid-western and western genetic lineages, whereas eastern introductions derive only from the mid-western lineage. Western USA invasive populations exhibit fewer, but more diverse haplotypes compared to eastern USA invasive populations. We also recovered an undescribed, divergent lineage of Cyprinella that has been cryptically introduced into the western USA, which raises the possibility that hybridization has proceeded following secondary contact between previously allopatric lineages. Approximate Bayesian Computation modeling suggests that the disjunct distribution of red shiner across North America is an agglomeration of independent regional invasions with distinct origins, rather than stepwise advance of an invasion front or secondary introductions across regions. Thus localized control may be effective in managing non-native red shiner, including further spread to areas of conservation concern.</description><identifier>ISSN: 1566-0621</identifier><identifier>EISSN: 1572-9737</identifier><identifier>DOI: 10.1007/s10592-016-0822-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animal Genetics and Genomics ; Animal populations ; Bayesian theory ; Biodiversity ; Biomedical and Life Sciences ; Conservation areas ; Conservation Biology/Ecology ; Cyprinella ; Cyprinella lutrensis ; cytochrome b ; Ecology ; Evolutionary Biology ; Fish ; Genetic diversity ; genetic variation ; Haplotypes ; hybridization ; Indigenous species ; Introduced species ; Invasive species ; Life Sciences ; minnows ; Nonnative species ; Phylogenetics ; phylogeny ; Plant Genetics and Genomics ; Research Article ; risk ; secondary contact</subject><ispartof>Conservation genetics, 2016-08, Vol.17 (4), p.795-809</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-1efd69c2c80c1482793513eccecd6b66a252cb494015466114ca0abddf2f36a63</citedby><cites>FETCH-LOGICAL-c373t-1efd69c2c80c1482793513eccecd6b66a252cb494015466114ca0abddf2f36a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10592-016-0822-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10592-016-0822-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Glotzbecker, Gregory J</creatorcontrib><creatorcontrib>Fernando Alda</creatorcontrib><creatorcontrib>Richard E. Broughton</creatorcontrib><creatorcontrib>David A. Neely</creatorcontrib><creatorcontrib>Richard L. Mayden</creatorcontrib><creatorcontrib>Michael J. Blum</creatorcontrib><title>Geographic independence and phylogenetic diversity of red shiner introductions</title><title>Conservation genetics</title><addtitle>Conserv Genet</addtitle><description>Identifying areas at risk of invasion can be difficult when the distribution of a non-native species encompasses geographically disjunct regions. Understanding genealogical relationships among native and non-native populations can clarify the origins of fragmented distributions, which in turn can clarify how fast and far a non-native species may spread. We evaluated genetic variation across the native and invasive ranges of red shiner (Cyprinella lutrensis), a minnow known to displace and hybridize with native species, to reconstruct invasion pathways across the United States (USA). Examination of mitochondrial cytochrome-b variation found that native range populations of red shiner fall into four highly divergent lineages that likely warrant species recognition. Introduced red shiner populations in the eastern and western USA are derived from only two of these lineages. Western USA populations originate from the mid-western and western genetic lineages, whereas eastern introductions derive only from the mid-western lineage. Western USA invasive populations exhibit fewer, but more diverse haplotypes compared to eastern USA invasive populations. We also recovered an undescribed, divergent lineage of Cyprinella that has been cryptically introduced into the western USA, which raises the possibility that hybridization has proceeded following secondary contact between previously allopatric lineages. Approximate Bayesian Computation modeling suggests that the disjunct distribution of red shiner across North America is an agglomeration of independent regional invasions with distinct origins, rather than stepwise advance of an invasion front or secondary introductions across regions. Thus localized control may be effective in managing non-native red shiner, including further spread to areas of conservation concern.</description><subject>Animal Genetics and Genomics</subject><subject>Animal populations</subject><subject>Bayesian theory</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Conservation areas</subject><subject>Conservation Biology/Ecology</subject><subject>Cyprinella</subject><subject>Cyprinella lutrensis</subject><subject>cytochrome b</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Fish</subject><subject>Genetic diversity</subject><subject>genetic variation</subject><subject>Haplotypes</subject><subject>hybridization</subject><subject>Indigenous species</subject><subject>Introduced species</subject><subject>Invasive species</subject><subject>Life Sciences</subject><subject>minnows</subject><subject>Nonnative species</subject><subject>Phylogenetics</subject><subject>phylogeny</subject><subject>Plant Genetics and Genomics</subject><subject>Research Article</subject><subject>risk</subject><subject>secondary contact</subject><issn>1566-0621</issn><issn>1572-9737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kbFOwzAQhiMEEqXwAExEYmEJ-OzESUZUQUFCMEBny7UvqavWDnaC1LfHURgQA4t90n3f6fw7SS6B3AIh5V0AUtQ0I8AzUlGa1UfJDIoyFiUrj8eaxw6ncJqchbAlEaQlzJLXJbrWy25jVGqsxg7jYRWm0uq02xx2rkWLfexq84U-mP6Quib1qNOwMRZ9tHrv9KB642w4T04auQt48XPPk9Xjw8fiKXt5Wz4v7l8yxUrWZ4CN5rWiqiIK8oqWNSuAoVKoNF9zLmlB1TqvcwJFzjlAriSRa60b2jAuOZsnN9PczrvPAUMv9iYo3O2kRTcEARWpeM4JYxG9_oNu3eBt3G6kSE1ZzkcKJkp5F4LHRnTe7KU_CCBiTFhMCYsYnBgTFnV06OSEyNoW_a_J_0hXk9RIJ2TrTRCrdxqB-CVVfG3BvgHzWIdd</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Glotzbecker, Gregory J</creator><creator>Fernando Alda</creator><creator>Richard E. Broughton</creator><creator>David A. Neely</creator><creator>Richard L. Mayden</creator><creator>Michael J. Blum</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope></search><sort><creationdate>20160801</creationdate><title>Geographic independence and phylogenetic diversity of red shiner introductions</title><author>Glotzbecker, Gregory J ; Fernando Alda ; Richard E. Broughton ; David A. Neely ; Richard L. Mayden ; Michael J. Blum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-1efd69c2c80c1482793513eccecd6b66a252cb494015466114ca0abddf2f36a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animal populations</topic><topic>Bayesian theory</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Conservation areas</topic><topic>Conservation Biology/Ecology</topic><topic>Cyprinella</topic><topic>Cyprinella lutrensis</topic><topic>cytochrome b</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Fish</topic><topic>Genetic diversity</topic><topic>genetic variation</topic><topic>Haplotypes</topic><topic>hybridization</topic><topic>Indigenous species</topic><topic>Introduced species</topic><topic>Invasive species</topic><topic>Life Sciences</topic><topic>minnows</topic><topic>Nonnative species</topic><topic>Phylogenetics</topic><topic>phylogeny</topic><topic>Plant Genetics and Genomics</topic><topic>Research Article</topic><topic>risk</topic><topic>secondary contact</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glotzbecker, Gregory J</creatorcontrib><creatorcontrib>Fernando Alda</creatorcontrib><creatorcontrib>Richard E. Broughton</creatorcontrib><creatorcontrib>David A. Neely</creatorcontrib><creatorcontrib>Richard L. Mayden</creatorcontrib><creatorcontrib>Michael J. Blum</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Conservation genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glotzbecker, Gregory J</au><au>Fernando Alda</au><au>Richard E. Broughton</au><au>David A. Neely</au><au>Richard L. Mayden</au><au>Michael J. Blum</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geographic independence and phylogenetic diversity of red shiner introductions</atitle><jtitle>Conservation genetics</jtitle><stitle>Conserv Genet</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>17</volume><issue>4</issue><spage>795</spage><epage>809</epage><pages>795-809</pages><issn>1566-0621</issn><eissn>1572-9737</eissn><abstract>Identifying areas at risk of invasion can be difficult when the distribution of a non-native species encompasses geographically disjunct regions. Understanding genealogical relationships among native and non-native populations can clarify the origins of fragmented distributions, which in turn can clarify how fast and far a non-native species may spread. We evaluated genetic variation across the native and invasive ranges of red shiner (Cyprinella lutrensis), a minnow known to displace and hybridize with native species, to reconstruct invasion pathways across the United States (USA). Examination of mitochondrial cytochrome-b variation found that native range populations of red shiner fall into four highly divergent lineages that likely warrant species recognition. Introduced red shiner populations in the eastern and western USA are derived from only two of these lineages. Western USA populations originate from the mid-western and western genetic lineages, whereas eastern introductions derive only from the mid-western lineage. Western USA invasive populations exhibit fewer, but more diverse haplotypes compared to eastern USA invasive populations. We also recovered an undescribed, divergent lineage of Cyprinella that has been cryptically introduced into the western USA, which raises the possibility that hybridization has proceeded following secondary contact between previously allopatric lineages. Approximate Bayesian Computation modeling suggests that the disjunct distribution of red shiner across North America is an agglomeration of independent regional invasions with distinct origins, rather than stepwise advance of an invasion front or secondary introductions across regions. Thus localized control may be effective in managing non-native red shiner, including further spread to areas of conservation concern.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10592-016-0822-9</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1566-0621 |
ispartof | Conservation genetics, 2016-08, Vol.17 (4), p.795-809 |
issn | 1566-0621 1572-9737 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808646033 |
source | Springer Nature - Complete Springer Journals |
subjects | Animal Genetics and Genomics Animal populations Bayesian theory Biodiversity Biomedical and Life Sciences Conservation areas Conservation Biology/Ecology Cyprinella Cyprinella lutrensis cytochrome b Ecology Evolutionary Biology Fish Genetic diversity genetic variation Haplotypes hybridization Indigenous species Introduced species Invasive species Life Sciences minnows Nonnative species Phylogenetics phylogeny Plant Genetics and Genomics Research Article risk secondary contact |
title | Geographic independence and phylogenetic diversity of red shiner introductions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geographic%20independence%20and%20phylogenetic%20diversity%20of%20red%20shiner%20introductions&rft.jtitle=Conservation%20genetics&rft.au=Glotzbecker,%20Gregory%20J&rft.date=2016-08-01&rft.volume=17&rft.issue=4&rft.spage=795&rft.epage=809&rft.pages=795-809&rft.issn=1566-0621&rft.eissn=1572-9737&rft_id=info:doi/10.1007/s10592-016-0822-9&rft_dat=%3Cproquest_cross%3E1808646033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800923463&rft_id=info:pmid/&rfr_iscdi=true |