Geographic independence and phylogenetic diversity of red shiner introductions

Identifying areas at risk of invasion can be difficult when the distribution of a non-native species encompasses geographically disjunct regions. Understanding genealogical relationships among native and non-native populations can clarify the origins of fragmented distributions, which in turn can cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Conservation genetics 2016-08, Vol.17 (4), p.795-809
Hauptverfasser: Glotzbecker, Gregory J, Fernando Alda, Richard E. Broughton, David A. Neely, Richard L. Mayden, Michael J. Blum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 809
container_issue 4
container_start_page 795
container_title Conservation genetics
container_volume 17
creator Glotzbecker, Gregory J
Fernando Alda
Richard E. Broughton
David A. Neely
Richard L. Mayden
Michael J. Blum
description Identifying areas at risk of invasion can be difficult when the distribution of a non-native species encompasses geographically disjunct regions. Understanding genealogical relationships among native and non-native populations can clarify the origins of fragmented distributions, which in turn can clarify how fast and far a non-native species may spread. We evaluated genetic variation across the native and invasive ranges of red shiner (Cyprinella lutrensis), a minnow known to displace and hybridize with native species, to reconstruct invasion pathways across the United States (USA). Examination of mitochondrial cytochrome-b variation found that native range populations of red shiner fall into four highly divergent lineages that likely warrant species recognition. Introduced red shiner populations in the eastern and western USA are derived from only two of these lineages. Western USA populations originate from the mid-western and western genetic lineages, whereas eastern introductions derive only from the mid-western lineage. Western USA invasive populations exhibit fewer, but more diverse haplotypes compared to eastern USA invasive populations. We also recovered an undescribed, divergent lineage of Cyprinella that has been cryptically introduced into the western USA, which raises the possibility that hybridization has proceeded following secondary contact between previously allopatric lineages. Approximate Bayesian Computation modeling suggests that the disjunct distribution of red shiner across North America is an agglomeration of independent regional invasions with distinct origins, rather than stepwise advance of an invasion front or secondary introductions across regions. Thus localized control may be effective in managing non-native red shiner, including further spread to areas of conservation concern.
doi_str_mv 10.1007/s10592-016-0822-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808646033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808646033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-1efd69c2c80c1482793513eccecd6b66a252cb494015466114ca0abddf2f36a63</originalsourceid><addsrcrecordid>eNp9kbFOwzAQhiMEEqXwAExEYmEJ-OzESUZUQUFCMEBny7UvqavWDnaC1LfHURgQA4t90n3f6fw7SS6B3AIh5V0AUtQ0I8AzUlGa1UfJDIoyFiUrj8eaxw6ncJqchbAlEaQlzJLXJbrWy25jVGqsxg7jYRWm0uq02xx2rkWLfexq84U-mP6Quib1qNOwMRZ9tHrv9KB642w4T04auQt48XPPk9Xjw8fiKXt5Wz4v7l8yxUrWZ4CN5rWiqiIK8oqWNSuAoVKoNF9zLmlB1TqvcwJFzjlAriSRa60b2jAuOZsnN9PczrvPAUMv9iYo3O2kRTcEARWpeM4JYxG9_oNu3eBt3G6kSE1ZzkcKJkp5F4LHRnTe7KU_CCBiTFhMCYsYnBgTFnV06OSEyNoW_a_J_0hXk9RIJ2TrTRCrdxqB-CVVfG3BvgHzWIdd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800923463</pqid></control><display><type>article</type><title>Geographic independence and phylogenetic diversity of red shiner introductions</title><source>Springer Nature - Complete Springer Journals</source><creator>Glotzbecker, Gregory J ; Fernando Alda ; Richard E. Broughton ; David A. Neely ; Richard L. Mayden ; Michael J. Blum</creator><creatorcontrib>Glotzbecker, Gregory J ; Fernando Alda ; Richard E. Broughton ; David A. Neely ; Richard L. Mayden ; Michael J. Blum</creatorcontrib><description>Identifying areas at risk of invasion can be difficult when the distribution of a non-native species encompasses geographically disjunct regions. Understanding genealogical relationships among native and non-native populations can clarify the origins of fragmented distributions, which in turn can clarify how fast and far a non-native species may spread. We evaluated genetic variation across the native and invasive ranges of red shiner (Cyprinella lutrensis), a minnow known to displace and hybridize with native species, to reconstruct invasion pathways across the United States (USA). Examination of mitochondrial cytochrome-b variation found that native range populations of red shiner fall into four highly divergent lineages that likely warrant species recognition. Introduced red shiner populations in the eastern and western USA are derived from only two of these lineages. Western USA populations originate from the mid-western and western genetic lineages, whereas eastern introductions derive only from the mid-western lineage. Western USA invasive populations exhibit fewer, but more diverse haplotypes compared to eastern USA invasive populations. We also recovered an undescribed, divergent lineage of Cyprinella that has been cryptically introduced into the western USA, which raises the possibility that hybridization has proceeded following secondary contact between previously allopatric lineages. Approximate Bayesian Computation modeling suggests that the disjunct distribution of red shiner across North America is an agglomeration of independent regional invasions with distinct origins, rather than stepwise advance of an invasion front or secondary introductions across regions. Thus localized control may be effective in managing non-native red shiner, including further spread to areas of conservation concern.</description><identifier>ISSN: 1566-0621</identifier><identifier>EISSN: 1572-9737</identifier><identifier>DOI: 10.1007/s10592-016-0822-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animal Genetics and Genomics ; Animal populations ; Bayesian theory ; Biodiversity ; Biomedical and Life Sciences ; Conservation areas ; Conservation Biology/Ecology ; Cyprinella ; Cyprinella lutrensis ; cytochrome b ; Ecology ; Evolutionary Biology ; Fish ; Genetic diversity ; genetic variation ; Haplotypes ; hybridization ; Indigenous species ; Introduced species ; Invasive species ; Life Sciences ; minnows ; Nonnative species ; Phylogenetics ; phylogeny ; Plant Genetics and Genomics ; Research Article ; risk ; secondary contact</subject><ispartof>Conservation genetics, 2016-08, Vol.17 (4), p.795-809</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-1efd69c2c80c1482793513eccecd6b66a252cb494015466114ca0abddf2f36a63</citedby><cites>FETCH-LOGICAL-c373t-1efd69c2c80c1482793513eccecd6b66a252cb494015466114ca0abddf2f36a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10592-016-0822-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10592-016-0822-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Glotzbecker, Gregory J</creatorcontrib><creatorcontrib>Fernando Alda</creatorcontrib><creatorcontrib>Richard E. Broughton</creatorcontrib><creatorcontrib>David A. Neely</creatorcontrib><creatorcontrib>Richard L. Mayden</creatorcontrib><creatorcontrib>Michael J. Blum</creatorcontrib><title>Geographic independence and phylogenetic diversity of red shiner introductions</title><title>Conservation genetics</title><addtitle>Conserv Genet</addtitle><description>Identifying areas at risk of invasion can be difficult when the distribution of a non-native species encompasses geographically disjunct regions. Understanding genealogical relationships among native and non-native populations can clarify the origins of fragmented distributions, which in turn can clarify how fast and far a non-native species may spread. We evaluated genetic variation across the native and invasive ranges of red shiner (Cyprinella lutrensis), a minnow known to displace and hybridize with native species, to reconstruct invasion pathways across the United States (USA). Examination of mitochondrial cytochrome-b variation found that native range populations of red shiner fall into four highly divergent lineages that likely warrant species recognition. Introduced red shiner populations in the eastern and western USA are derived from only two of these lineages. Western USA populations originate from the mid-western and western genetic lineages, whereas eastern introductions derive only from the mid-western lineage. Western USA invasive populations exhibit fewer, but more diverse haplotypes compared to eastern USA invasive populations. We also recovered an undescribed, divergent lineage of Cyprinella that has been cryptically introduced into the western USA, which raises the possibility that hybridization has proceeded following secondary contact between previously allopatric lineages. Approximate Bayesian Computation modeling suggests that the disjunct distribution of red shiner across North America is an agglomeration of independent regional invasions with distinct origins, rather than stepwise advance of an invasion front or secondary introductions across regions. Thus localized control may be effective in managing non-native red shiner, including further spread to areas of conservation concern.</description><subject>Animal Genetics and Genomics</subject><subject>Animal populations</subject><subject>Bayesian theory</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Conservation areas</subject><subject>Conservation Biology/Ecology</subject><subject>Cyprinella</subject><subject>Cyprinella lutrensis</subject><subject>cytochrome b</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Fish</subject><subject>Genetic diversity</subject><subject>genetic variation</subject><subject>Haplotypes</subject><subject>hybridization</subject><subject>Indigenous species</subject><subject>Introduced species</subject><subject>Invasive species</subject><subject>Life Sciences</subject><subject>minnows</subject><subject>Nonnative species</subject><subject>Phylogenetics</subject><subject>phylogeny</subject><subject>Plant Genetics and Genomics</subject><subject>Research Article</subject><subject>risk</subject><subject>secondary contact</subject><issn>1566-0621</issn><issn>1572-9737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kbFOwzAQhiMEEqXwAExEYmEJ-OzESUZUQUFCMEBny7UvqavWDnaC1LfHURgQA4t90n3f6fw7SS6B3AIh5V0AUtQ0I8AzUlGa1UfJDIoyFiUrj8eaxw6ncJqchbAlEaQlzJLXJbrWy25jVGqsxg7jYRWm0uq02xx2rkWLfexq84U-mP6Quib1qNOwMRZ9tHrv9KB642w4T04auQt48XPPk9Xjw8fiKXt5Wz4v7l8yxUrWZ4CN5rWiqiIK8oqWNSuAoVKoNF9zLmlB1TqvcwJFzjlAriSRa60b2jAuOZsnN9PczrvPAUMv9iYo3O2kRTcEARWpeM4JYxG9_oNu3eBt3G6kSE1ZzkcKJkp5F4LHRnTe7KU_CCBiTFhMCYsYnBgTFnV06OSEyNoW_a_J_0hXk9RIJ2TrTRCrdxqB-CVVfG3BvgHzWIdd</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Glotzbecker, Gregory J</creator><creator>Fernando Alda</creator><creator>Richard E. Broughton</creator><creator>David A. Neely</creator><creator>Richard L. Mayden</creator><creator>Michael J. Blum</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope></search><sort><creationdate>20160801</creationdate><title>Geographic independence and phylogenetic diversity of red shiner introductions</title><author>Glotzbecker, Gregory J ; Fernando Alda ; Richard E. Broughton ; David A. Neely ; Richard L. Mayden ; Michael J. Blum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-1efd69c2c80c1482793513eccecd6b66a252cb494015466114ca0abddf2f36a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animal populations</topic><topic>Bayesian theory</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Conservation areas</topic><topic>Conservation Biology/Ecology</topic><topic>Cyprinella</topic><topic>Cyprinella lutrensis</topic><topic>cytochrome b</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Fish</topic><topic>Genetic diversity</topic><topic>genetic variation</topic><topic>Haplotypes</topic><topic>hybridization</topic><topic>Indigenous species</topic><topic>Introduced species</topic><topic>Invasive species</topic><topic>Life Sciences</topic><topic>minnows</topic><topic>Nonnative species</topic><topic>Phylogenetics</topic><topic>phylogeny</topic><topic>Plant Genetics and Genomics</topic><topic>Research Article</topic><topic>risk</topic><topic>secondary contact</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glotzbecker, Gregory J</creatorcontrib><creatorcontrib>Fernando Alda</creatorcontrib><creatorcontrib>Richard E. Broughton</creatorcontrib><creatorcontrib>David A. Neely</creatorcontrib><creatorcontrib>Richard L. Mayden</creatorcontrib><creatorcontrib>Michael J. Blum</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Conservation genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glotzbecker, Gregory J</au><au>Fernando Alda</au><au>Richard E. Broughton</au><au>David A. Neely</au><au>Richard L. Mayden</au><au>Michael J. Blum</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geographic independence and phylogenetic diversity of red shiner introductions</atitle><jtitle>Conservation genetics</jtitle><stitle>Conserv Genet</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>17</volume><issue>4</issue><spage>795</spage><epage>809</epage><pages>795-809</pages><issn>1566-0621</issn><eissn>1572-9737</eissn><abstract>Identifying areas at risk of invasion can be difficult when the distribution of a non-native species encompasses geographically disjunct regions. Understanding genealogical relationships among native and non-native populations can clarify the origins of fragmented distributions, which in turn can clarify how fast and far a non-native species may spread. We evaluated genetic variation across the native and invasive ranges of red shiner (Cyprinella lutrensis), a minnow known to displace and hybridize with native species, to reconstruct invasion pathways across the United States (USA). Examination of mitochondrial cytochrome-b variation found that native range populations of red shiner fall into four highly divergent lineages that likely warrant species recognition. Introduced red shiner populations in the eastern and western USA are derived from only two of these lineages. Western USA populations originate from the mid-western and western genetic lineages, whereas eastern introductions derive only from the mid-western lineage. Western USA invasive populations exhibit fewer, but more diverse haplotypes compared to eastern USA invasive populations. We also recovered an undescribed, divergent lineage of Cyprinella that has been cryptically introduced into the western USA, which raises the possibility that hybridization has proceeded following secondary contact between previously allopatric lineages. Approximate Bayesian Computation modeling suggests that the disjunct distribution of red shiner across North America is an agglomeration of independent regional invasions with distinct origins, rather than stepwise advance of an invasion front or secondary introductions across regions. Thus localized control may be effective in managing non-native red shiner, including further spread to areas of conservation concern.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10592-016-0822-9</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1566-0621
ispartof Conservation genetics, 2016-08, Vol.17 (4), p.795-809
issn 1566-0621
1572-9737
language eng
recordid cdi_proquest_miscellaneous_1808646033
source Springer Nature - Complete Springer Journals
subjects Animal Genetics and Genomics
Animal populations
Bayesian theory
Biodiversity
Biomedical and Life Sciences
Conservation areas
Conservation Biology/Ecology
Cyprinella
Cyprinella lutrensis
cytochrome b
Ecology
Evolutionary Biology
Fish
Genetic diversity
genetic variation
Haplotypes
hybridization
Indigenous species
Introduced species
Invasive species
Life Sciences
minnows
Nonnative species
Phylogenetics
phylogeny
Plant Genetics and Genomics
Research Article
risk
secondary contact
title Geographic independence and phylogenetic diversity of red shiner introductions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geographic%20independence%20and%20phylogenetic%20diversity%20of%20red%20shiner%20introductions&rft.jtitle=Conservation%20genetics&rft.au=Glotzbecker,%20Gregory%20J&rft.date=2016-08-01&rft.volume=17&rft.issue=4&rft.spage=795&rft.epage=809&rft.pages=795-809&rft.issn=1566-0621&rft.eissn=1572-9737&rft_id=info:doi/10.1007/s10592-016-0822-9&rft_dat=%3Cproquest_cross%3E1808646033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800923463&rft_id=info:pmid/&rfr_iscdi=true