Typing and selection of wild strains of Trichoderma spp. producers of extracellular laccase
Using the ITS region and the gene tef1, 23 strains of the genus Trichoderma were identified as belonging to the species T. harzianum (n = 14), T. olivascens (n = 1), T. trixiae (n = 1), T. viridialbum (n = 1), T. tomentosum (n = 2), T. koningii (n = 1), T. atroviride (n = 1), T. viride (n = 1), and...
Gespeichert in:
Veröffentlicht in: | Biotechnology progress 2016-05, Vol.32 (3), p.787-798 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 798 |
---|---|
container_issue | 3 |
container_start_page | 787 |
container_title | Biotechnology progress |
container_volume | 32 |
creator | Cázares-García, Saila Viridiana Arredondo-Santoyo, Marina Vázquez-Marrufo, Gerardo Soledad Vázquez-Garcidueñas, Ma Robinson-Fuentes, Virginia A. Gómez-Reyes, Víctor Manuel |
description | Using the ITS region and the gene tef1, 23 strains of the genus Trichoderma were identified as belonging to the species T. harzianum (n = 14), T. olivascens (n = 1), T. trixiae (n = 1), T. viridialbum (n = 1), T. tomentosum (n = 2), T. koningii (n = 1), T. atroviride (n = 1), T. viride (n = 1), and T. gamsii (n = 1). Strains expressing extracellular laccase activity were selected by decolorization/oxidation assays in solid media, using azo, anthraquinone, indigoid, and triphenylmethane dyes, and the phenolic substances tannic acid and guaiacol. No strain decolorized Direct Blue 71 or Chicago Blue 6B, but all of them weakly oxidized guaiacol, decolorized Methyl Orange, and efficiently oxidized tannic acid. Based in decolorization/oxidation assays, strains CMU‐1 (T. harzianum), CMU‐8 (T. atroviride), CMU‐218 (T. viride), and CMU‐221 (T. tomentosum) were selected for evaluating their extracellular laccase activity in liquid media. Strain CMU‐8 showed no basal laccase activity, while strains CMU‐1, CMU‐218, and CMU‐221 had a basal laccase activity of 1,313.88 mU/mL, 763.88 mU/mL, and 799.53 mU/mL, respectively. Addition of sorghum straw inhibited laccase activity in strain CMU‐1 by 34%, relative to the basal culture, while strains CMU‐8, CMU‐21, and CMU‐221 increased their laccase activity by 1,321.5%, 64%, and 47%, respectively. These results show that assayed phenolic substrates are good tools for selecting laccase producer strains in Trichoderma. These same assays indicate the potential use of studied strains for bioremediation processes. Straw laccase induction suggests that analyzed strains have potential for straw delignification in biopulping and other biotechnological applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:787–798, 2016 |
doi_str_mv | 10.1002/btpr.2237 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808645933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808645933</sourcerecordid><originalsourceid>FETCH-LOGICAL-g5277-e023dd0ce84abbc8a05339fdd8700355422aa3c0b30fef6922f20c0d41f64b413</originalsourceid><addsrcrecordid>eNqFkcFP2zAUxq2JCUrHgX8AReLCJe2zXxI7x60aFKnaJujEpB0sx3YgLE0yOxH0v8dpgcMuO9l-7_fZz99HyCmFGQVg86Lv3Iwx5B_IhKYM4gwQD8hE8DSLeY7iiBx7_wgAAjJ2SI5YJhgN9Qn5vd52VXMfqcZE3tZW91XbRG0ZPVV1qPROVY0fz2tX6YfWWLdRke-6WdS51gzaul3XPgdS27oeauWiWmmtvP1EPpaq9vbkdZ2Sn5df14tlvPp-db34vIrvU8Z5bIGhMaCtSFRRaKEgRcxLYwQHwDRNGFMKNRQIpS2znLGSgQaT0DJLioTilFzs7w0j_R2s7-Wm8uMwqrHt4CUVILIkzRH_j_Jc5MEYIQJ6_g_62A6uCR_ZURQp7t4-e6WGYmON7Fy1UW4r3xwOwHwPBEPt9r1PQY7RyTE6OUYnv6x_3IyboIj3isr39vldodwfmXHkqbz7diVXdzfL22R5K3_hC4cpmiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798131341</pqid></control><display><type>article</type><title>Typing and selection of wild strains of Trichoderma spp. producers of extracellular laccase</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Cázares-García, Saila Viridiana ; Arredondo-Santoyo, Marina ; Vázquez-Marrufo, Gerardo ; Soledad Vázquez-Garcidueñas, Ma ; Robinson-Fuentes, Virginia A. ; Gómez-Reyes, Víctor Manuel</creator><creatorcontrib>Cázares-García, Saila Viridiana ; Arredondo-Santoyo, Marina ; Vázquez-Marrufo, Gerardo ; Soledad Vázquez-Garcidueñas, Ma ; Robinson-Fuentes, Virginia A. ; Gómez-Reyes, Víctor Manuel</creatorcontrib><description>Using the ITS region and the gene tef1, 23 strains of the genus Trichoderma were identified as belonging to the species T. harzianum (n = 14), T. olivascens (n = 1), T. trixiae (n = 1), T. viridialbum (n = 1), T. tomentosum (n = 2), T. koningii (n = 1), T. atroviride (n = 1), T. viride (n = 1), and T. gamsii (n = 1). Strains expressing extracellular laccase activity were selected by decolorization/oxidation assays in solid media, using azo, anthraquinone, indigoid, and triphenylmethane dyes, and the phenolic substances tannic acid and guaiacol. No strain decolorized Direct Blue 71 or Chicago Blue 6B, but all of them weakly oxidized guaiacol, decolorized Methyl Orange, and efficiently oxidized tannic acid. Based in decolorization/oxidation assays, strains CMU‐1 (T. harzianum), CMU‐8 (T. atroviride), CMU‐218 (T. viride), and CMU‐221 (T. tomentosum) were selected for evaluating their extracellular laccase activity in liquid media. Strain CMU‐8 showed no basal laccase activity, while strains CMU‐1, CMU‐218, and CMU‐221 had a basal laccase activity of 1,313.88 mU/mL, 763.88 mU/mL, and 799.53 mU/mL, respectively. Addition of sorghum straw inhibited laccase activity in strain CMU‐1 by 34%, relative to the basal culture, while strains CMU‐8, CMU‐21, and CMU‐221 increased their laccase activity by 1,321.5%, 64%, and 47%, respectively. These results show that assayed phenolic substrates are good tools for selecting laccase producer strains in Trichoderma. These same assays indicate the potential use of studied strains for bioremediation processes. Straw laccase induction suggests that analyzed strains have potential for straw delignification in biopulping and other biotechnological applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:787–798, 2016</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.2237</identifier><identifier>PMID: 26821938</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>decolorization ; DNA, Fungal - genetics ; Laccase - metabolism ; phenolic compounds ; Sorghum ; sorghum straw ; Trichoderma ; Trichoderma - cytology ; Trichoderma - genetics ; Trichoderma - metabolism</subject><ispartof>Biotechnology progress, 2016-05, Vol.32 (3), p.787-798</ispartof><rights>2016 American Institute of Chemical Engineers</rights><rights>2016 American Institute of Chemical Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.2237$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.2237$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26821938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cázares-García, Saila Viridiana</creatorcontrib><creatorcontrib>Arredondo-Santoyo, Marina</creatorcontrib><creatorcontrib>Vázquez-Marrufo, Gerardo</creatorcontrib><creatorcontrib>Soledad Vázquez-Garcidueñas, Ma</creatorcontrib><creatorcontrib>Robinson-Fuentes, Virginia A.</creatorcontrib><creatorcontrib>Gómez-Reyes, Víctor Manuel</creatorcontrib><title>Typing and selection of wild strains of Trichoderma spp. producers of extracellular laccase</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>Using the ITS region and the gene tef1, 23 strains of the genus Trichoderma were identified as belonging to the species T. harzianum (n = 14), T. olivascens (n = 1), T. trixiae (n = 1), T. viridialbum (n = 1), T. tomentosum (n = 2), T. koningii (n = 1), T. atroviride (n = 1), T. viride (n = 1), and T. gamsii (n = 1). Strains expressing extracellular laccase activity were selected by decolorization/oxidation assays in solid media, using azo, anthraquinone, indigoid, and triphenylmethane dyes, and the phenolic substances tannic acid and guaiacol. No strain decolorized Direct Blue 71 or Chicago Blue 6B, but all of them weakly oxidized guaiacol, decolorized Methyl Orange, and efficiently oxidized tannic acid. Based in decolorization/oxidation assays, strains CMU‐1 (T. harzianum), CMU‐8 (T. atroviride), CMU‐218 (T. viride), and CMU‐221 (T. tomentosum) were selected for evaluating their extracellular laccase activity in liquid media. Strain CMU‐8 showed no basal laccase activity, while strains CMU‐1, CMU‐218, and CMU‐221 had a basal laccase activity of 1,313.88 mU/mL, 763.88 mU/mL, and 799.53 mU/mL, respectively. Addition of sorghum straw inhibited laccase activity in strain CMU‐1 by 34%, relative to the basal culture, while strains CMU‐8, CMU‐21, and CMU‐221 increased their laccase activity by 1,321.5%, 64%, and 47%, respectively. These results show that assayed phenolic substrates are good tools for selecting laccase producer strains in Trichoderma. These same assays indicate the potential use of studied strains for bioremediation processes. Straw laccase induction suggests that analyzed strains have potential for straw delignification in biopulping and other biotechnological applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:787–798, 2016</description><subject>decolorization</subject><subject>DNA, Fungal - genetics</subject><subject>Laccase - metabolism</subject><subject>phenolic compounds</subject><subject>Sorghum</subject><subject>sorghum straw</subject><subject>Trichoderma</subject><subject>Trichoderma - cytology</subject><subject>Trichoderma - genetics</subject><subject>Trichoderma - metabolism</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFP2zAUxq2JCUrHgX8AReLCJe2zXxI7x60aFKnaJujEpB0sx3YgLE0yOxH0v8dpgcMuO9l-7_fZz99HyCmFGQVg86Lv3Iwx5B_IhKYM4gwQD8hE8DSLeY7iiBx7_wgAAjJ2SI5YJhgN9Qn5vd52VXMfqcZE3tZW91XbRG0ZPVV1qPROVY0fz2tX6YfWWLdRke-6WdS51gzaul3XPgdS27oeauWiWmmtvP1EPpaq9vbkdZ2Sn5df14tlvPp-db34vIrvU8Z5bIGhMaCtSFRRaKEgRcxLYwQHwDRNGFMKNRQIpS2znLGSgQaT0DJLioTilFzs7w0j_R2s7-Wm8uMwqrHt4CUVILIkzRH_j_Jc5MEYIQJ6_g_62A6uCR_ZURQp7t4-e6WGYmON7Fy1UW4r3xwOwHwPBEPt9r1PQY7RyTE6OUYnv6x_3IyboIj3isr39vldodwfmXHkqbz7diVXdzfL22R5K3_hC4cpmiU</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Cázares-García, Saila Viridiana</creator><creator>Arredondo-Santoyo, Marina</creator><creator>Vázquez-Marrufo, Gerardo</creator><creator>Soledad Vázquez-Garcidueñas, Ma</creator><creator>Robinson-Fuentes, Virginia A.</creator><creator>Gómez-Reyes, Víctor Manuel</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201605</creationdate><title>Typing and selection of wild strains of Trichoderma spp. producers of extracellular laccase</title><author>Cázares-García, Saila Viridiana ; Arredondo-Santoyo, Marina ; Vázquez-Marrufo, Gerardo ; Soledad Vázquez-Garcidueñas, Ma ; Robinson-Fuentes, Virginia A. ; Gómez-Reyes, Víctor Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g5277-e023dd0ce84abbc8a05339fdd8700355422aa3c0b30fef6922f20c0d41f64b413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>decolorization</topic><topic>DNA, Fungal - genetics</topic><topic>Laccase - metabolism</topic><topic>phenolic compounds</topic><topic>Sorghum</topic><topic>sorghum straw</topic><topic>Trichoderma</topic><topic>Trichoderma - cytology</topic><topic>Trichoderma - genetics</topic><topic>Trichoderma - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cázares-García, Saila Viridiana</creatorcontrib><creatorcontrib>Arredondo-Santoyo, Marina</creatorcontrib><creatorcontrib>Vázquez-Marrufo, Gerardo</creatorcontrib><creatorcontrib>Soledad Vázquez-Garcidueñas, Ma</creatorcontrib><creatorcontrib>Robinson-Fuentes, Virginia A.</creatorcontrib><creatorcontrib>Gómez-Reyes, Víctor Manuel</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cázares-García, Saila Viridiana</au><au>Arredondo-Santoyo, Marina</au><au>Vázquez-Marrufo, Gerardo</au><au>Soledad Vázquez-Garcidueñas, Ma</au><au>Robinson-Fuentes, Virginia A.</au><au>Gómez-Reyes, Víctor Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Typing and selection of wild strains of Trichoderma spp. producers of extracellular laccase</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2016-05</date><risdate>2016</risdate><volume>32</volume><issue>3</issue><spage>787</spage><epage>798</epage><pages>787-798</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>Using the ITS region and the gene tef1, 23 strains of the genus Trichoderma were identified as belonging to the species T. harzianum (n = 14), T. olivascens (n = 1), T. trixiae (n = 1), T. viridialbum (n = 1), T. tomentosum (n = 2), T. koningii (n = 1), T. atroviride (n = 1), T. viride (n = 1), and T. gamsii (n = 1). Strains expressing extracellular laccase activity were selected by decolorization/oxidation assays in solid media, using azo, anthraquinone, indigoid, and triphenylmethane dyes, and the phenolic substances tannic acid and guaiacol. No strain decolorized Direct Blue 71 or Chicago Blue 6B, but all of them weakly oxidized guaiacol, decolorized Methyl Orange, and efficiently oxidized tannic acid. Based in decolorization/oxidation assays, strains CMU‐1 (T. harzianum), CMU‐8 (T. atroviride), CMU‐218 (T. viride), and CMU‐221 (T. tomentosum) were selected for evaluating their extracellular laccase activity in liquid media. Strain CMU‐8 showed no basal laccase activity, while strains CMU‐1, CMU‐218, and CMU‐221 had a basal laccase activity of 1,313.88 mU/mL, 763.88 mU/mL, and 799.53 mU/mL, respectively. Addition of sorghum straw inhibited laccase activity in strain CMU‐1 by 34%, relative to the basal culture, while strains CMU‐8, CMU‐21, and CMU‐221 increased their laccase activity by 1,321.5%, 64%, and 47%, respectively. These results show that assayed phenolic substrates are good tools for selecting laccase producer strains in Trichoderma. These same assays indicate the potential use of studied strains for bioremediation processes. Straw laccase induction suggests that analyzed strains have potential for straw delignification in biopulping and other biotechnological applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:787–798, 2016</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26821938</pmid><doi>10.1002/btpr.2237</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2016-05, Vol.32 (3), p.787-798 |
issn | 8756-7938 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808645933 |
source | Wiley-Blackwell Journals; MEDLINE |
subjects | decolorization DNA, Fungal - genetics Laccase - metabolism phenolic compounds Sorghum sorghum straw Trichoderma Trichoderma - cytology Trichoderma - genetics Trichoderma - metabolism |
title | Typing and selection of wild strains of Trichoderma spp. producers of extracellular laccase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Typing%20and%20selection%20of%20wild%20strains%20of%20Trichoderma%20spp.%20producers%20of%20extracellular%20laccase&rft.jtitle=Biotechnology%20progress&rft.au=C%C3%A1zares-Garc%C3%ADa,%20Saila%20Viridiana&rft.date=2016-05&rft.volume=32&rft.issue=3&rft.spage=787&rft.epage=798&rft.pages=787-798&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.2237&rft_dat=%3Cproquest_pubme%3E1808645933%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798131341&rft_id=info:pmid/26821938&rfr_iscdi=true |