Typing and selection of wild strains of Trichoderma spp. producers of extracellular laccase

Using the ITS region and the gene tef1, 23 strains of the genus Trichoderma were identified as belonging to the species T. harzianum (n = 14), T. olivascens (n = 1), T. trixiae (n = 1), T. viridialbum (n = 1), T. tomentosum (n = 2), T. koningii (n = 1), T. atroviride (n = 1), T. viride (n = 1), and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology progress 2016-05, Vol.32 (3), p.787-798
Hauptverfasser: Cázares-García, Saila Viridiana, Arredondo-Santoyo, Marina, Vázquez-Marrufo, Gerardo, Soledad Vázquez-Garcidueñas, Ma, Robinson-Fuentes, Virginia A., Gómez-Reyes, Víctor Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 798
container_issue 3
container_start_page 787
container_title Biotechnology progress
container_volume 32
creator Cázares-García, Saila Viridiana
Arredondo-Santoyo, Marina
Vázquez-Marrufo, Gerardo
Soledad Vázquez-Garcidueñas, Ma
Robinson-Fuentes, Virginia A.
Gómez-Reyes, Víctor Manuel
description Using the ITS region and the gene tef1, 23 strains of the genus Trichoderma were identified as belonging to the species T. harzianum (n = 14), T. olivascens (n = 1), T. trixiae (n = 1), T. viridialbum (n = 1), T. tomentosum (n = 2), T. koningii (n = 1), T. atroviride (n = 1), T. viride (n = 1), and T. gamsii (n = 1). Strains expressing extracellular laccase activity were selected by decolorization/oxidation assays in solid media, using azo, anthraquinone, indigoid, and triphenylmethane dyes, and the phenolic substances tannic acid and guaiacol. No strain decolorized Direct Blue 71 or Chicago Blue 6B, but all of them weakly oxidized guaiacol, decolorized Methyl Orange, and efficiently oxidized tannic acid. Based in decolorization/oxidation assays, strains CMU‐1 (T. harzianum), CMU‐8 (T. atroviride), CMU‐218 (T. viride), and CMU‐221 (T. tomentosum) were selected for evaluating their extracellular laccase activity in liquid media. Strain CMU‐8 showed no basal laccase activity, while strains CMU‐1, CMU‐218, and CMU‐221 had a basal laccase activity of 1,313.88 mU/mL, 763.88 mU/mL, and 799.53 mU/mL, respectively. Addition of sorghum straw inhibited laccase activity in strain CMU‐1 by 34%, relative to the basal culture, while strains CMU‐8, CMU‐21, and CMU‐221 increased their laccase activity by 1,321.5%, 64%, and 47%, respectively. These results show that assayed phenolic substrates are good tools for selecting laccase producer strains in Trichoderma. These same assays indicate the potential use of studied strains for bioremediation processes. Straw laccase induction suggests that analyzed strains have potential for straw delignification in biopulping and other biotechnological applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:787–798, 2016
doi_str_mv 10.1002/btpr.2237
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808645933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808645933</sourcerecordid><originalsourceid>FETCH-LOGICAL-g5277-e023dd0ce84abbc8a05339fdd8700355422aa3c0b30fef6922f20c0d41f64b413</originalsourceid><addsrcrecordid>eNqFkcFP2zAUxq2JCUrHgX8AReLCJe2zXxI7x60aFKnaJujEpB0sx3YgLE0yOxH0v8dpgcMuO9l-7_fZz99HyCmFGQVg86Lv3Iwx5B_IhKYM4gwQD8hE8DSLeY7iiBx7_wgAAjJ2SI5YJhgN9Qn5vd52VXMfqcZE3tZW91XbRG0ZPVV1qPROVY0fz2tX6YfWWLdRke-6WdS51gzaul3XPgdS27oeauWiWmmtvP1EPpaq9vbkdZ2Sn5df14tlvPp-db34vIrvU8Z5bIGhMaCtSFRRaKEgRcxLYwQHwDRNGFMKNRQIpS2znLGSgQaT0DJLioTilFzs7w0j_R2s7-Wm8uMwqrHt4CUVILIkzRH_j_Jc5MEYIQJ6_g_62A6uCR_ZURQp7t4-e6WGYmON7Fy1UW4r3xwOwHwPBEPt9r1PQY7RyTE6OUYnv6x_3IyboIj3isr39vldodwfmXHkqbz7diVXdzfL22R5K3_hC4cpmiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798131341</pqid></control><display><type>article</type><title>Typing and selection of wild strains of Trichoderma spp. producers of extracellular laccase</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Cázares-García, Saila Viridiana ; Arredondo-Santoyo, Marina ; Vázquez-Marrufo, Gerardo ; Soledad Vázquez-Garcidueñas, Ma ; Robinson-Fuentes, Virginia A. ; Gómez-Reyes, Víctor Manuel</creator><creatorcontrib>Cázares-García, Saila Viridiana ; Arredondo-Santoyo, Marina ; Vázquez-Marrufo, Gerardo ; Soledad Vázquez-Garcidueñas, Ma ; Robinson-Fuentes, Virginia A. ; Gómez-Reyes, Víctor Manuel</creatorcontrib><description>Using the ITS region and the gene tef1, 23 strains of the genus Trichoderma were identified as belonging to the species T. harzianum (n = 14), T. olivascens (n = 1), T. trixiae (n = 1), T. viridialbum (n = 1), T. tomentosum (n = 2), T. koningii (n = 1), T. atroviride (n = 1), T. viride (n = 1), and T. gamsii (n = 1). Strains expressing extracellular laccase activity were selected by decolorization/oxidation assays in solid media, using azo, anthraquinone, indigoid, and triphenylmethane dyes, and the phenolic substances tannic acid and guaiacol. No strain decolorized Direct Blue 71 or Chicago Blue 6B, but all of them weakly oxidized guaiacol, decolorized Methyl Orange, and efficiently oxidized tannic acid. Based in decolorization/oxidation assays, strains CMU‐1 (T. harzianum), CMU‐8 (T. atroviride), CMU‐218 (T. viride), and CMU‐221 (T. tomentosum) were selected for evaluating their extracellular laccase activity in liquid media. Strain CMU‐8 showed no basal laccase activity, while strains CMU‐1, CMU‐218, and CMU‐221 had a basal laccase activity of 1,313.88 mU/mL, 763.88 mU/mL, and 799.53 mU/mL, respectively. Addition of sorghum straw inhibited laccase activity in strain CMU‐1 by 34%, relative to the basal culture, while strains CMU‐8, CMU‐21, and CMU‐221 increased their laccase activity by 1,321.5%, 64%, and 47%, respectively. These results show that assayed phenolic substrates are good tools for selecting laccase producer strains in Trichoderma. These same assays indicate the potential use of studied strains for bioremediation processes. Straw laccase induction suggests that analyzed strains have potential for straw delignification in biopulping and other biotechnological applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:787–798, 2016</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.2237</identifier><identifier>PMID: 26821938</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>decolorization ; DNA, Fungal - genetics ; Laccase - metabolism ; phenolic compounds ; Sorghum ; sorghum straw ; Trichoderma ; Trichoderma - cytology ; Trichoderma - genetics ; Trichoderma - metabolism</subject><ispartof>Biotechnology progress, 2016-05, Vol.32 (3), p.787-798</ispartof><rights>2016 American Institute of Chemical Engineers</rights><rights>2016 American Institute of Chemical Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.2237$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.2237$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26821938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cázares-García, Saila Viridiana</creatorcontrib><creatorcontrib>Arredondo-Santoyo, Marina</creatorcontrib><creatorcontrib>Vázquez-Marrufo, Gerardo</creatorcontrib><creatorcontrib>Soledad Vázquez-Garcidueñas, Ma</creatorcontrib><creatorcontrib>Robinson-Fuentes, Virginia A.</creatorcontrib><creatorcontrib>Gómez-Reyes, Víctor Manuel</creatorcontrib><title>Typing and selection of wild strains of Trichoderma spp. producers of extracellular laccase</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>Using the ITS region and the gene tef1, 23 strains of the genus Trichoderma were identified as belonging to the species T. harzianum (n = 14), T. olivascens (n = 1), T. trixiae (n = 1), T. viridialbum (n = 1), T. tomentosum (n = 2), T. koningii (n = 1), T. atroviride (n = 1), T. viride (n = 1), and T. gamsii (n = 1). Strains expressing extracellular laccase activity were selected by decolorization/oxidation assays in solid media, using azo, anthraquinone, indigoid, and triphenylmethane dyes, and the phenolic substances tannic acid and guaiacol. No strain decolorized Direct Blue 71 or Chicago Blue 6B, but all of them weakly oxidized guaiacol, decolorized Methyl Orange, and efficiently oxidized tannic acid. Based in decolorization/oxidation assays, strains CMU‐1 (T. harzianum), CMU‐8 (T. atroviride), CMU‐218 (T. viride), and CMU‐221 (T. tomentosum) were selected for evaluating their extracellular laccase activity in liquid media. Strain CMU‐8 showed no basal laccase activity, while strains CMU‐1, CMU‐218, and CMU‐221 had a basal laccase activity of 1,313.88 mU/mL, 763.88 mU/mL, and 799.53 mU/mL, respectively. Addition of sorghum straw inhibited laccase activity in strain CMU‐1 by 34%, relative to the basal culture, while strains CMU‐8, CMU‐21, and CMU‐221 increased their laccase activity by 1,321.5%, 64%, and 47%, respectively. These results show that assayed phenolic substrates are good tools for selecting laccase producer strains in Trichoderma. These same assays indicate the potential use of studied strains for bioremediation processes. Straw laccase induction suggests that analyzed strains have potential for straw delignification in biopulping and other biotechnological applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:787–798, 2016</description><subject>decolorization</subject><subject>DNA, Fungal - genetics</subject><subject>Laccase - metabolism</subject><subject>phenolic compounds</subject><subject>Sorghum</subject><subject>sorghum straw</subject><subject>Trichoderma</subject><subject>Trichoderma - cytology</subject><subject>Trichoderma - genetics</subject><subject>Trichoderma - metabolism</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFP2zAUxq2JCUrHgX8AReLCJe2zXxI7x60aFKnaJujEpB0sx3YgLE0yOxH0v8dpgcMuO9l-7_fZz99HyCmFGQVg86Lv3Iwx5B_IhKYM4gwQD8hE8DSLeY7iiBx7_wgAAjJ2SI5YJhgN9Qn5vd52VXMfqcZE3tZW91XbRG0ZPVV1qPROVY0fz2tX6YfWWLdRke-6WdS51gzaul3XPgdS27oeauWiWmmtvP1EPpaq9vbkdZ2Sn5df14tlvPp-db34vIrvU8Z5bIGhMaCtSFRRaKEgRcxLYwQHwDRNGFMKNRQIpS2znLGSgQaT0DJLioTilFzs7w0j_R2s7-Wm8uMwqrHt4CUVILIkzRH_j_Jc5MEYIQJ6_g_62A6uCR_ZURQp7t4-e6WGYmON7Fy1UW4r3xwOwHwPBEPt9r1PQY7RyTE6OUYnv6x_3IyboIj3isr39vldodwfmXHkqbz7diVXdzfL22R5K3_hC4cpmiU</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Cázares-García, Saila Viridiana</creator><creator>Arredondo-Santoyo, Marina</creator><creator>Vázquez-Marrufo, Gerardo</creator><creator>Soledad Vázquez-Garcidueñas, Ma</creator><creator>Robinson-Fuentes, Virginia A.</creator><creator>Gómez-Reyes, Víctor Manuel</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201605</creationdate><title>Typing and selection of wild strains of Trichoderma spp. producers of extracellular laccase</title><author>Cázares-García, Saila Viridiana ; Arredondo-Santoyo, Marina ; Vázquez-Marrufo, Gerardo ; Soledad Vázquez-Garcidueñas, Ma ; Robinson-Fuentes, Virginia A. ; Gómez-Reyes, Víctor Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g5277-e023dd0ce84abbc8a05339fdd8700355422aa3c0b30fef6922f20c0d41f64b413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>decolorization</topic><topic>DNA, Fungal - genetics</topic><topic>Laccase - metabolism</topic><topic>phenolic compounds</topic><topic>Sorghum</topic><topic>sorghum straw</topic><topic>Trichoderma</topic><topic>Trichoderma - cytology</topic><topic>Trichoderma - genetics</topic><topic>Trichoderma - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cázares-García, Saila Viridiana</creatorcontrib><creatorcontrib>Arredondo-Santoyo, Marina</creatorcontrib><creatorcontrib>Vázquez-Marrufo, Gerardo</creatorcontrib><creatorcontrib>Soledad Vázquez-Garcidueñas, Ma</creatorcontrib><creatorcontrib>Robinson-Fuentes, Virginia A.</creatorcontrib><creatorcontrib>Gómez-Reyes, Víctor Manuel</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cázares-García, Saila Viridiana</au><au>Arredondo-Santoyo, Marina</au><au>Vázquez-Marrufo, Gerardo</au><au>Soledad Vázquez-Garcidueñas, Ma</au><au>Robinson-Fuentes, Virginia A.</au><au>Gómez-Reyes, Víctor Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Typing and selection of wild strains of Trichoderma spp. producers of extracellular laccase</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2016-05</date><risdate>2016</risdate><volume>32</volume><issue>3</issue><spage>787</spage><epage>798</epage><pages>787-798</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>Using the ITS region and the gene tef1, 23 strains of the genus Trichoderma were identified as belonging to the species T. harzianum (n = 14), T. olivascens (n = 1), T. trixiae (n = 1), T. viridialbum (n = 1), T. tomentosum (n = 2), T. koningii (n = 1), T. atroviride (n = 1), T. viride (n = 1), and T. gamsii (n = 1). Strains expressing extracellular laccase activity were selected by decolorization/oxidation assays in solid media, using azo, anthraquinone, indigoid, and triphenylmethane dyes, and the phenolic substances tannic acid and guaiacol. No strain decolorized Direct Blue 71 or Chicago Blue 6B, but all of them weakly oxidized guaiacol, decolorized Methyl Orange, and efficiently oxidized tannic acid. Based in decolorization/oxidation assays, strains CMU‐1 (T. harzianum), CMU‐8 (T. atroviride), CMU‐218 (T. viride), and CMU‐221 (T. tomentosum) were selected for evaluating their extracellular laccase activity in liquid media. Strain CMU‐8 showed no basal laccase activity, while strains CMU‐1, CMU‐218, and CMU‐221 had a basal laccase activity of 1,313.88 mU/mL, 763.88 mU/mL, and 799.53 mU/mL, respectively. Addition of sorghum straw inhibited laccase activity in strain CMU‐1 by 34%, relative to the basal culture, while strains CMU‐8, CMU‐21, and CMU‐221 increased their laccase activity by 1,321.5%, 64%, and 47%, respectively. These results show that assayed phenolic substrates are good tools for selecting laccase producer strains in Trichoderma. These same assays indicate the potential use of studied strains for bioremediation processes. Straw laccase induction suggests that analyzed strains have potential for straw delignification in biopulping and other biotechnological applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:787–798, 2016</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26821938</pmid><doi>10.1002/btpr.2237</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2016-05, Vol.32 (3), p.787-798
issn 8756-7938
1520-6033
language eng
recordid cdi_proquest_miscellaneous_1808645933
source Wiley-Blackwell Journals; MEDLINE
subjects decolorization
DNA, Fungal - genetics
Laccase - metabolism
phenolic compounds
Sorghum
sorghum straw
Trichoderma
Trichoderma - cytology
Trichoderma - genetics
Trichoderma - metabolism
title Typing and selection of wild strains of Trichoderma spp. producers of extracellular laccase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Typing%20and%20selection%20of%20wild%20strains%20of%20Trichoderma%20spp.%20producers%20of%20extracellular%20laccase&rft.jtitle=Biotechnology%20progress&rft.au=C%C3%A1zares-Garc%C3%ADa,%20Saila%20Viridiana&rft.date=2016-05&rft.volume=32&rft.issue=3&rft.spage=787&rft.epage=798&rft.pages=787-798&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.2237&rft_dat=%3Cproquest_pubme%3E1808645933%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798131341&rft_id=info:pmid/26821938&rfr_iscdi=true