An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula

Summary Biochemical and genetic analyses have previously identified caffeoyl shikimate esterase (CSE) as an enzyme in the monolignol biosynthesis pathway in Arabidopsis thaliana, although the generality of this finding has been questioned. Here we show the presence of CSE genes and associated enzyme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2016-06, Vol.86 (5), p.363-375
Hauptverfasser: Ha, Chan Man, Escamilla‐Trevino, Luis, Yarce, Juan Carlos Serrani, Kim, Hoon, Ralph, John, Chen, Fang, Dixon, Richard A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 375
container_issue 5
container_start_page 363
container_title The Plant journal : for cell and molecular biology
container_volume 86
creator Ha, Chan Man
Escamilla‐Trevino, Luis
Yarce, Juan Carlos Serrani
Kim, Hoon
Ralph, John
Chen, Fang
Dixon, Richard A.
description Summary Biochemical and genetic analyses have previously identified caffeoyl shikimate esterase (CSE) as an enzyme in the monolignol biosynthesis pathway in Arabidopsis thaliana, although the generality of this finding has been questioned. Here we show the presence of CSE genes and associated enzyme activity in barrel medic (Medicago truncatula, dicot, Leguminosae), poplar (Populus deltoides, dicot, Salicaceae), and switchgrass (Panicum virgatum, monocot, Poaceae). Loss of function of CSE in transposon insertion lines of M. truncatula results in severe dwarfing, altered development, reduction in lignin content, and preferential accumulation of hydroxyphenyl units in lignin, indicating that the CSE enzyme is critical for normal lignification in this species. However, the model grass Brachypodium distachyon and corn (Zea mays) do not possess orthologs of the currently characterized CSE genes, and crude protein extracts from stems of these species exhibit only a weak esterase activity with caffeoyl shikimate. Our results suggest that the reaction catalyzed by CSE may not be essential for lignification in all plant species. Significance Statement The role of caffeoyl shikimate esterase in lignin biosynthesis is controversial. Here we show that its role in lignification differs significantly among species; it is totally dispensable in Brachypodium, significantly involved in Arabidopsis and critically involved in Medicago.
doi_str_mv 10.1111/tpj.13177
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808643494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808643494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4217-9c04d0de77cdee364a5efd4c919190b886d9f39b6f67613db226e9269e4e39f23</originalsourceid><addsrcrecordid>eNp1kE1LRCEUhiWKmj4W_YEQ2tTill5Nx2VEnxS1KGgnXu-xnJzrpPcS8-9zmmoRdIRzFj48vLwI7VJyRMsc97PJEWVUyhU0okycVIyy51U0IkqQSnJab6DNnCeEUMkEX0cbtSRMCspGqDntMOQMXe9NwCkGwNFha5yDOA84v_o3PzU9FKiHZDJg3-Fp7GLwL2Xhxsc87_pXyD4vvu6g9da8RNynobOmH4LZRmvOhAw733cLPV2cP55dVbf3l9dnp7eV5TWVlbKEt6QFKW0LUHKaE3Att4qWR5rxWLTKMdUIJxbR26auBahaKODAlKvZFjpYemcpvg8lr576bCEE00EcsqZjMhacccULuv8HncQhdSWdplKpmnJGF8LDJWVTzDmB07NUykhzTYleFK9L8fqr-MLufRuHZgrtL_nTdAGOl8CHDzD_36QfH26Wyk9PvI1v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799214312</pqid></control><display><type>article</type><title>An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula</title><source>MEDLINE</source><source>Wiley Journals</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Ha, Chan Man ; Escamilla‐Trevino, Luis ; Yarce, Juan Carlos Serrani ; Kim, Hoon ; Ralph, John ; Chen, Fang ; Dixon, Richard A.</creator><creatorcontrib>Ha, Chan Man ; Escamilla‐Trevino, Luis ; Yarce, Juan Carlos Serrani ; Kim, Hoon ; Ralph, John ; Chen, Fang ; Dixon, Richard A.</creatorcontrib><description>Summary Biochemical and genetic analyses have previously identified caffeoyl shikimate esterase (CSE) as an enzyme in the monolignol biosynthesis pathway in Arabidopsis thaliana, although the generality of this finding has been questioned. Here we show the presence of CSE genes and associated enzyme activity in barrel medic (Medicago truncatula, dicot, Leguminosae), poplar (Populus deltoides, dicot, Salicaceae), and switchgrass (Panicum virgatum, monocot, Poaceae). Loss of function of CSE in transposon insertion lines of M. truncatula results in severe dwarfing, altered development, reduction in lignin content, and preferential accumulation of hydroxyphenyl units in lignin, indicating that the CSE enzyme is critical for normal lignification in this species. However, the model grass Brachypodium distachyon and corn (Zea mays) do not possess orthologs of the currently characterized CSE genes, and crude protein extracts from stems of these species exhibit only a weak esterase activity with caffeoyl shikimate. Our results suggest that the reaction catalyzed by CSE may not be essential for lignification in all plant species. Significance Statement The role of caffeoyl shikimate esterase in lignin biosynthesis is controversial. Here we show that its role in lignification differs significantly among species; it is totally dispensable in Brachypodium, significantly involved in Arabidopsis and critically involved in Medicago.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.13177</identifier><identifier>PMID: 27037613</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Arabidopsis ; Arabidopsis Proteins - genetics ; Arabidopsis thaliana ; Biosynthesis ; Biosynthetic Pathways ; Botany ; Brachypodium ; Brachypodium - genetics ; Brachypodium distachyon ; Carboxylic Ester Hydrolases - genetics ; Enzymes ; esterase ; Esterases - genetics ; Esterases - metabolism ; Gene Expression Regulation, Plant ; Lignin ; Lignin - analysis ; Lignin - chemistry ; Lignin - metabolism ; lignin biosynthesis ; Medicago ; Medicago truncatula ; Medicago truncatula - enzymology ; Medicago truncatula - genetics ; Medicago truncatula - growth &amp; development ; Mutagenesis, Insertional ; Nicotiana - enzymology ; Nicotiana - genetics ; Nicotiana - growth &amp; development ; Panicum - enzymology ; Panicum - genetics ; Panicum virgatum ; Phenotype ; Phylogeny ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Stems - enzymology ; Plant Stems - genetics ; Plant Stems - growth &amp; development ; Plants, Genetically Modified ; Poaceae ; Populus - enzymology ; Populus - genetics ; Populus deltoides ; Recombinant Proteins ; Salicaceae ; Shikimic Acid - chemistry ; Shikimic Acid - metabolism ; switchgrass ; Zea mays ; Zea mays - genetics</subject><ispartof>The Plant journal : for cell and molecular biology, 2016-06, Vol.86 (5), p.363-375</ispartof><rights>2016 The Authors The Plant Journal © 2016 John Wiley &amp; Sons Ltd</rights><rights>2016 The Authors The Plant Journal © 2016 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4217-9c04d0de77cdee364a5efd4c919190b886d9f39b6f67613db226e9269e4e39f23</citedby><cites>FETCH-LOGICAL-c4217-9c04d0de77cdee364a5efd4c919190b886d9f39b6f67613db226e9269e4e39f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.13177$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.13177$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27037613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ha, Chan Man</creatorcontrib><creatorcontrib>Escamilla‐Trevino, Luis</creatorcontrib><creatorcontrib>Yarce, Juan Carlos Serrani</creatorcontrib><creatorcontrib>Kim, Hoon</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Dixon, Richard A.</creatorcontrib><title>An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary Biochemical and genetic analyses have previously identified caffeoyl shikimate esterase (CSE) as an enzyme in the monolignol biosynthesis pathway in Arabidopsis thaliana, although the generality of this finding has been questioned. Here we show the presence of CSE genes and associated enzyme activity in barrel medic (Medicago truncatula, dicot, Leguminosae), poplar (Populus deltoides, dicot, Salicaceae), and switchgrass (Panicum virgatum, monocot, Poaceae). Loss of function of CSE in transposon insertion lines of M. truncatula results in severe dwarfing, altered development, reduction in lignin content, and preferential accumulation of hydroxyphenyl units in lignin, indicating that the CSE enzyme is critical for normal lignification in this species. However, the model grass Brachypodium distachyon and corn (Zea mays) do not possess orthologs of the currently characterized CSE genes, and crude protein extracts from stems of these species exhibit only a weak esterase activity with caffeoyl shikimate. Our results suggest that the reaction catalyzed by CSE may not be essential for lignification in all plant species. Significance Statement The role of caffeoyl shikimate esterase in lignin biosynthesis is controversial. Here we show that its role in lignification differs significantly among species; it is totally dispensable in Brachypodium, significantly involved in Arabidopsis and critically involved in Medicago.</description><subject>Arabidopsis</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways</subject><subject>Botany</subject><subject>Brachypodium</subject><subject>Brachypodium - genetics</subject><subject>Brachypodium distachyon</subject><subject>Carboxylic Ester Hydrolases - genetics</subject><subject>Enzymes</subject><subject>esterase</subject><subject>Esterases - genetics</subject><subject>Esterases - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>Lignin</subject><subject>Lignin - analysis</subject><subject>Lignin - chemistry</subject><subject>Lignin - metabolism</subject><subject>lignin biosynthesis</subject><subject>Medicago</subject><subject>Medicago truncatula</subject><subject>Medicago truncatula - enzymology</subject><subject>Medicago truncatula - genetics</subject><subject>Medicago truncatula - growth &amp; development</subject><subject>Mutagenesis, Insertional</subject><subject>Nicotiana - enzymology</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - growth &amp; development</subject><subject>Panicum - enzymology</subject><subject>Panicum - genetics</subject><subject>Panicum virgatum</subject><subject>Phenotype</subject><subject>Phylogeny</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Stems - enzymology</subject><subject>Plant Stems - genetics</subject><subject>Plant Stems - growth &amp; development</subject><subject>Plants, Genetically Modified</subject><subject>Poaceae</subject><subject>Populus - enzymology</subject><subject>Populus - genetics</subject><subject>Populus deltoides</subject><subject>Recombinant Proteins</subject><subject>Salicaceae</subject><subject>Shikimic Acid - chemistry</subject><subject>Shikimic Acid - metabolism</subject><subject>switchgrass</subject><subject>Zea mays</subject><subject>Zea mays - genetics</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LRCEUhiWKmj4W_YEQ2tTill5Nx2VEnxS1KGgnXu-xnJzrpPcS8-9zmmoRdIRzFj48vLwI7VJyRMsc97PJEWVUyhU0okycVIyy51U0IkqQSnJab6DNnCeEUMkEX0cbtSRMCspGqDntMOQMXe9NwCkGwNFha5yDOA84v_o3PzU9FKiHZDJg3-Fp7GLwL2Xhxsc87_pXyD4vvu6g9da8RNynobOmH4LZRmvOhAw733cLPV2cP55dVbf3l9dnp7eV5TWVlbKEt6QFKW0LUHKaE3Att4qWR5rxWLTKMdUIJxbR26auBahaKODAlKvZFjpYemcpvg8lr576bCEE00EcsqZjMhacccULuv8HncQhdSWdplKpmnJGF8LDJWVTzDmB07NUykhzTYleFK9L8fqr-MLufRuHZgrtL_nTdAGOl8CHDzD_36QfH26Wyk9PvI1v</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Ha, Chan Man</creator><creator>Escamilla‐Trevino, Luis</creator><creator>Yarce, Juan Carlos Serrani</creator><creator>Kim, Hoon</creator><creator>Ralph, John</creator><creator>Chen, Fang</creator><creator>Dixon, Richard A.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201606</creationdate><title>An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula</title><author>Ha, Chan Man ; Escamilla‐Trevino, Luis ; Yarce, Juan Carlos Serrani ; Kim, Hoon ; Ralph, John ; Chen, Fang ; Dixon, Richard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4217-9c04d0de77cdee364a5efd4c919190b886d9f39b6f67613db226e9269e4e39f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways</topic><topic>Botany</topic><topic>Brachypodium</topic><topic>Brachypodium - genetics</topic><topic>Brachypodium distachyon</topic><topic>Carboxylic Ester Hydrolases - genetics</topic><topic>Enzymes</topic><topic>esterase</topic><topic>Esterases - genetics</topic><topic>Esterases - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>Lignin</topic><topic>Lignin - analysis</topic><topic>Lignin - chemistry</topic><topic>Lignin - metabolism</topic><topic>lignin biosynthesis</topic><topic>Medicago</topic><topic>Medicago truncatula</topic><topic>Medicago truncatula - enzymology</topic><topic>Medicago truncatula - genetics</topic><topic>Medicago truncatula - growth &amp; development</topic><topic>Mutagenesis, Insertional</topic><topic>Nicotiana - enzymology</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - growth &amp; development</topic><topic>Panicum - enzymology</topic><topic>Panicum - genetics</topic><topic>Panicum virgatum</topic><topic>Phenotype</topic><topic>Phylogeny</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Stems - enzymology</topic><topic>Plant Stems - genetics</topic><topic>Plant Stems - growth &amp; development</topic><topic>Plants, Genetically Modified</topic><topic>Poaceae</topic><topic>Populus - enzymology</topic><topic>Populus - genetics</topic><topic>Populus deltoides</topic><topic>Recombinant Proteins</topic><topic>Salicaceae</topic><topic>Shikimic Acid - chemistry</topic><topic>Shikimic Acid - metabolism</topic><topic>switchgrass</topic><topic>Zea mays</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Chan Man</creatorcontrib><creatorcontrib>Escamilla‐Trevino, Luis</creatorcontrib><creatorcontrib>Yarce, Juan Carlos Serrani</creatorcontrib><creatorcontrib>Kim, Hoon</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Dixon, Richard A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Chan Man</au><au>Escamilla‐Trevino, Luis</au><au>Yarce, Juan Carlos Serrani</au><au>Kim, Hoon</au><au>Ralph, John</au><au>Chen, Fang</au><au>Dixon, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2016-06</date><risdate>2016</risdate><volume>86</volume><issue>5</issue><spage>363</spage><epage>375</epage><pages>363-375</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary Biochemical and genetic analyses have previously identified caffeoyl shikimate esterase (CSE) as an enzyme in the monolignol biosynthesis pathway in Arabidopsis thaliana, although the generality of this finding has been questioned. Here we show the presence of CSE genes and associated enzyme activity in barrel medic (Medicago truncatula, dicot, Leguminosae), poplar (Populus deltoides, dicot, Salicaceae), and switchgrass (Panicum virgatum, monocot, Poaceae). Loss of function of CSE in transposon insertion lines of M. truncatula results in severe dwarfing, altered development, reduction in lignin content, and preferential accumulation of hydroxyphenyl units in lignin, indicating that the CSE enzyme is critical for normal lignification in this species. However, the model grass Brachypodium distachyon and corn (Zea mays) do not possess orthologs of the currently characterized CSE genes, and crude protein extracts from stems of these species exhibit only a weak esterase activity with caffeoyl shikimate. Our results suggest that the reaction catalyzed by CSE may not be essential for lignification in all plant species. Significance Statement The role of caffeoyl shikimate esterase in lignin biosynthesis is controversial. Here we show that its role in lignification differs significantly among species; it is totally dispensable in Brachypodium, significantly involved in Arabidopsis and critically involved in Medicago.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27037613</pmid><doi>10.1111/tpj.13177</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2016-06, Vol.86 (5), p.363-375
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_1808643494
source MEDLINE; Wiley Journals; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Arabidopsis
Arabidopsis Proteins - genetics
Arabidopsis thaliana
Biosynthesis
Biosynthetic Pathways
Botany
Brachypodium
Brachypodium - genetics
Brachypodium distachyon
Carboxylic Ester Hydrolases - genetics
Enzymes
esterase
Esterases - genetics
Esterases - metabolism
Gene Expression Regulation, Plant
Lignin
Lignin - analysis
Lignin - chemistry
Lignin - metabolism
lignin biosynthesis
Medicago
Medicago truncatula
Medicago truncatula - enzymology
Medicago truncatula - genetics
Medicago truncatula - growth & development
Mutagenesis, Insertional
Nicotiana - enzymology
Nicotiana - genetics
Nicotiana - growth & development
Panicum - enzymology
Panicum - genetics
Panicum virgatum
Phenotype
Phylogeny
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Stems - enzymology
Plant Stems - genetics
Plant Stems - growth & development
Plants, Genetically Modified
Poaceae
Populus - enzymology
Populus - genetics
Populus deltoides
Recombinant Proteins
Salicaceae
Shikimic Acid - chemistry
Shikimic Acid - metabolism
switchgrass
Zea mays
Zea mays - genetics
title An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20essential%20role%20of%20caffeoyl%20shikimate%20esterase%20in%20monolignol%20biosynthesis%20in%20Medicago%20truncatula&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Ha,%20Chan%20Man&rft.date=2016-06&rft.volume=86&rft.issue=5&rft.spage=363&rft.epage=375&rft.pages=363-375&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.13177&rft_dat=%3Cproquest_cross%3E1808643494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799214312&rft_id=info:pmid/27037613&rfr_iscdi=true