An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula
Summary Biochemical and genetic analyses have previously identified caffeoyl shikimate esterase (CSE) as an enzyme in the monolignol biosynthesis pathway in Arabidopsis thaliana, although the generality of this finding has been questioned. Here we show the presence of CSE genes and associated enzyme...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2016-06, Vol.86 (5), p.363-375 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 375 |
---|---|
container_issue | 5 |
container_start_page | 363 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 86 |
creator | Ha, Chan Man Escamilla‐Trevino, Luis Yarce, Juan Carlos Serrani Kim, Hoon Ralph, John Chen, Fang Dixon, Richard A. |
description | Summary
Biochemical and genetic analyses have previously identified caffeoyl shikimate esterase (CSE) as an enzyme in the monolignol biosynthesis pathway in Arabidopsis thaliana, although the generality of this finding has been questioned. Here we show the presence of CSE genes and associated enzyme activity in barrel medic (Medicago truncatula, dicot, Leguminosae), poplar (Populus deltoides, dicot, Salicaceae), and switchgrass (Panicum virgatum, monocot, Poaceae). Loss of function of CSE in transposon insertion lines of M. truncatula results in severe dwarfing, altered development, reduction in lignin content, and preferential accumulation of hydroxyphenyl units in lignin, indicating that the CSE enzyme is critical for normal lignification in this species. However, the model grass Brachypodium distachyon and corn (Zea mays) do not possess orthologs of the currently characterized CSE genes, and crude protein extracts from stems of these species exhibit only a weak esterase activity with caffeoyl shikimate. Our results suggest that the reaction catalyzed by CSE may not be essential for lignification in all plant species.
Significance Statement
The role of caffeoyl shikimate esterase in lignin biosynthesis is controversial. Here we show that its role in lignification differs significantly among species; it is totally dispensable in Brachypodium, significantly involved in Arabidopsis and critically involved in Medicago. |
doi_str_mv | 10.1111/tpj.13177 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808643494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808643494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4217-9c04d0de77cdee364a5efd4c919190b886d9f39b6f67613db226e9269e4e39f23</originalsourceid><addsrcrecordid>eNp1kE1LRCEUhiWKmj4W_YEQ2tTill5Nx2VEnxS1KGgnXu-xnJzrpPcS8-9zmmoRdIRzFj48vLwI7VJyRMsc97PJEWVUyhU0okycVIyy51U0IkqQSnJab6DNnCeEUMkEX0cbtSRMCspGqDntMOQMXe9NwCkGwNFha5yDOA84v_o3PzU9FKiHZDJg3-Fp7GLwL2Xhxsc87_pXyD4vvu6g9da8RNynobOmH4LZRmvOhAw733cLPV2cP55dVbf3l9dnp7eV5TWVlbKEt6QFKW0LUHKaE3Att4qWR5rxWLTKMdUIJxbR26auBahaKODAlKvZFjpYemcpvg8lr576bCEE00EcsqZjMhacccULuv8HncQhdSWdplKpmnJGF8LDJWVTzDmB07NUykhzTYleFK9L8fqr-MLufRuHZgrtL_nTdAGOl8CHDzD_36QfH26Wyk9PvI1v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799214312</pqid></control><display><type>article</type><title>An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula</title><source>MEDLINE</source><source>Wiley Journals</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Ha, Chan Man ; Escamilla‐Trevino, Luis ; Yarce, Juan Carlos Serrani ; Kim, Hoon ; Ralph, John ; Chen, Fang ; Dixon, Richard A.</creator><creatorcontrib>Ha, Chan Man ; Escamilla‐Trevino, Luis ; Yarce, Juan Carlos Serrani ; Kim, Hoon ; Ralph, John ; Chen, Fang ; Dixon, Richard A.</creatorcontrib><description>Summary
Biochemical and genetic analyses have previously identified caffeoyl shikimate esterase (CSE) as an enzyme in the monolignol biosynthesis pathway in Arabidopsis thaliana, although the generality of this finding has been questioned. Here we show the presence of CSE genes and associated enzyme activity in barrel medic (Medicago truncatula, dicot, Leguminosae), poplar (Populus deltoides, dicot, Salicaceae), and switchgrass (Panicum virgatum, monocot, Poaceae). Loss of function of CSE in transposon insertion lines of M. truncatula results in severe dwarfing, altered development, reduction in lignin content, and preferential accumulation of hydroxyphenyl units in lignin, indicating that the CSE enzyme is critical for normal lignification in this species. However, the model grass Brachypodium distachyon and corn (Zea mays) do not possess orthologs of the currently characterized CSE genes, and crude protein extracts from stems of these species exhibit only a weak esterase activity with caffeoyl shikimate. Our results suggest that the reaction catalyzed by CSE may not be essential for lignification in all plant species.
Significance Statement
The role of caffeoyl shikimate esterase in lignin biosynthesis is controversial. Here we show that its role in lignification differs significantly among species; it is totally dispensable in Brachypodium, significantly involved in Arabidopsis and critically involved in Medicago.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.13177</identifier><identifier>PMID: 27037613</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Arabidopsis ; Arabidopsis Proteins - genetics ; Arabidopsis thaliana ; Biosynthesis ; Biosynthetic Pathways ; Botany ; Brachypodium ; Brachypodium - genetics ; Brachypodium distachyon ; Carboxylic Ester Hydrolases - genetics ; Enzymes ; esterase ; Esterases - genetics ; Esterases - metabolism ; Gene Expression Regulation, Plant ; Lignin ; Lignin - analysis ; Lignin - chemistry ; Lignin - metabolism ; lignin biosynthesis ; Medicago ; Medicago truncatula ; Medicago truncatula - enzymology ; Medicago truncatula - genetics ; Medicago truncatula - growth & development ; Mutagenesis, Insertional ; Nicotiana - enzymology ; Nicotiana - genetics ; Nicotiana - growth & development ; Panicum - enzymology ; Panicum - genetics ; Panicum virgatum ; Phenotype ; Phylogeny ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Stems - enzymology ; Plant Stems - genetics ; Plant Stems - growth & development ; Plants, Genetically Modified ; Poaceae ; Populus - enzymology ; Populus - genetics ; Populus deltoides ; Recombinant Proteins ; Salicaceae ; Shikimic Acid - chemistry ; Shikimic Acid - metabolism ; switchgrass ; Zea mays ; Zea mays - genetics</subject><ispartof>The Plant journal : for cell and molecular biology, 2016-06, Vol.86 (5), p.363-375</ispartof><rights>2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd</rights><rights>2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4217-9c04d0de77cdee364a5efd4c919190b886d9f39b6f67613db226e9269e4e39f23</citedby><cites>FETCH-LOGICAL-c4217-9c04d0de77cdee364a5efd4c919190b886d9f39b6f67613db226e9269e4e39f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.13177$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.13177$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27037613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ha, Chan Man</creatorcontrib><creatorcontrib>Escamilla‐Trevino, Luis</creatorcontrib><creatorcontrib>Yarce, Juan Carlos Serrani</creatorcontrib><creatorcontrib>Kim, Hoon</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Dixon, Richard A.</creatorcontrib><title>An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary
Biochemical and genetic analyses have previously identified caffeoyl shikimate esterase (CSE) as an enzyme in the monolignol biosynthesis pathway in Arabidopsis thaliana, although the generality of this finding has been questioned. Here we show the presence of CSE genes and associated enzyme activity in barrel medic (Medicago truncatula, dicot, Leguminosae), poplar (Populus deltoides, dicot, Salicaceae), and switchgrass (Panicum virgatum, monocot, Poaceae). Loss of function of CSE in transposon insertion lines of M. truncatula results in severe dwarfing, altered development, reduction in lignin content, and preferential accumulation of hydroxyphenyl units in lignin, indicating that the CSE enzyme is critical for normal lignification in this species. However, the model grass Brachypodium distachyon and corn (Zea mays) do not possess orthologs of the currently characterized CSE genes, and crude protein extracts from stems of these species exhibit only a weak esterase activity with caffeoyl shikimate. Our results suggest that the reaction catalyzed by CSE may not be essential for lignification in all plant species.
Significance Statement
The role of caffeoyl shikimate esterase in lignin biosynthesis is controversial. Here we show that its role in lignification differs significantly among species; it is totally dispensable in Brachypodium, significantly involved in Arabidopsis and critically involved in Medicago.</description><subject>Arabidopsis</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways</subject><subject>Botany</subject><subject>Brachypodium</subject><subject>Brachypodium - genetics</subject><subject>Brachypodium distachyon</subject><subject>Carboxylic Ester Hydrolases - genetics</subject><subject>Enzymes</subject><subject>esterase</subject><subject>Esterases - genetics</subject><subject>Esterases - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>Lignin</subject><subject>Lignin - analysis</subject><subject>Lignin - chemistry</subject><subject>Lignin - metabolism</subject><subject>lignin biosynthesis</subject><subject>Medicago</subject><subject>Medicago truncatula</subject><subject>Medicago truncatula - enzymology</subject><subject>Medicago truncatula - genetics</subject><subject>Medicago truncatula - growth & development</subject><subject>Mutagenesis, Insertional</subject><subject>Nicotiana - enzymology</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - growth & development</subject><subject>Panicum - enzymology</subject><subject>Panicum - genetics</subject><subject>Panicum virgatum</subject><subject>Phenotype</subject><subject>Phylogeny</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Stems - enzymology</subject><subject>Plant Stems - genetics</subject><subject>Plant Stems - growth & development</subject><subject>Plants, Genetically Modified</subject><subject>Poaceae</subject><subject>Populus - enzymology</subject><subject>Populus - genetics</subject><subject>Populus deltoides</subject><subject>Recombinant Proteins</subject><subject>Salicaceae</subject><subject>Shikimic Acid - chemistry</subject><subject>Shikimic Acid - metabolism</subject><subject>switchgrass</subject><subject>Zea mays</subject><subject>Zea mays - genetics</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LRCEUhiWKmj4W_YEQ2tTill5Nx2VEnxS1KGgnXu-xnJzrpPcS8-9zmmoRdIRzFj48vLwI7VJyRMsc97PJEWVUyhU0okycVIyy51U0IkqQSnJab6DNnCeEUMkEX0cbtSRMCspGqDntMOQMXe9NwCkGwNFha5yDOA84v_o3PzU9FKiHZDJg3-Fp7GLwL2Xhxsc87_pXyD4vvu6g9da8RNynobOmH4LZRmvOhAw733cLPV2cP55dVbf3l9dnp7eV5TWVlbKEt6QFKW0LUHKaE3Att4qWR5rxWLTKMdUIJxbR26auBahaKODAlKvZFjpYemcpvg8lr576bCEE00EcsqZjMhacccULuv8HncQhdSWdplKpmnJGF8LDJWVTzDmB07NUykhzTYleFK9L8fqr-MLufRuHZgrtL_nTdAGOl8CHDzD_36QfH26Wyk9PvI1v</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Ha, Chan Man</creator><creator>Escamilla‐Trevino, Luis</creator><creator>Yarce, Juan Carlos Serrani</creator><creator>Kim, Hoon</creator><creator>Ralph, John</creator><creator>Chen, Fang</creator><creator>Dixon, Richard A.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201606</creationdate><title>An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula</title><author>Ha, Chan Man ; Escamilla‐Trevino, Luis ; Yarce, Juan Carlos Serrani ; Kim, Hoon ; Ralph, John ; Chen, Fang ; Dixon, Richard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4217-9c04d0de77cdee364a5efd4c919190b886d9f39b6f67613db226e9269e4e39f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways</topic><topic>Botany</topic><topic>Brachypodium</topic><topic>Brachypodium - genetics</topic><topic>Brachypodium distachyon</topic><topic>Carboxylic Ester Hydrolases - genetics</topic><topic>Enzymes</topic><topic>esterase</topic><topic>Esterases - genetics</topic><topic>Esterases - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>Lignin</topic><topic>Lignin - analysis</topic><topic>Lignin - chemistry</topic><topic>Lignin - metabolism</topic><topic>lignin biosynthesis</topic><topic>Medicago</topic><topic>Medicago truncatula</topic><topic>Medicago truncatula - enzymology</topic><topic>Medicago truncatula - genetics</topic><topic>Medicago truncatula - growth & development</topic><topic>Mutagenesis, Insertional</topic><topic>Nicotiana - enzymology</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - growth & development</topic><topic>Panicum - enzymology</topic><topic>Panicum - genetics</topic><topic>Panicum virgatum</topic><topic>Phenotype</topic><topic>Phylogeny</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Stems - enzymology</topic><topic>Plant Stems - genetics</topic><topic>Plant Stems - growth & development</topic><topic>Plants, Genetically Modified</topic><topic>Poaceae</topic><topic>Populus - enzymology</topic><topic>Populus - genetics</topic><topic>Populus deltoides</topic><topic>Recombinant Proteins</topic><topic>Salicaceae</topic><topic>Shikimic Acid - chemistry</topic><topic>Shikimic Acid - metabolism</topic><topic>switchgrass</topic><topic>Zea mays</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Chan Man</creatorcontrib><creatorcontrib>Escamilla‐Trevino, Luis</creatorcontrib><creatorcontrib>Yarce, Juan Carlos Serrani</creatorcontrib><creatorcontrib>Kim, Hoon</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Dixon, Richard A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Chan Man</au><au>Escamilla‐Trevino, Luis</au><au>Yarce, Juan Carlos Serrani</au><au>Kim, Hoon</au><au>Ralph, John</au><au>Chen, Fang</au><au>Dixon, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2016-06</date><risdate>2016</risdate><volume>86</volume><issue>5</issue><spage>363</spage><epage>375</epage><pages>363-375</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary
Biochemical and genetic analyses have previously identified caffeoyl shikimate esterase (CSE) as an enzyme in the monolignol biosynthesis pathway in Arabidopsis thaliana, although the generality of this finding has been questioned. Here we show the presence of CSE genes and associated enzyme activity in barrel medic (Medicago truncatula, dicot, Leguminosae), poplar (Populus deltoides, dicot, Salicaceae), and switchgrass (Panicum virgatum, monocot, Poaceae). Loss of function of CSE in transposon insertion lines of M. truncatula results in severe dwarfing, altered development, reduction in lignin content, and preferential accumulation of hydroxyphenyl units in lignin, indicating that the CSE enzyme is critical for normal lignification in this species. However, the model grass Brachypodium distachyon and corn (Zea mays) do not possess orthologs of the currently characterized CSE genes, and crude protein extracts from stems of these species exhibit only a weak esterase activity with caffeoyl shikimate. Our results suggest that the reaction catalyzed by CSE may not be essential for lignification in all plant species.
Significance Statement
The role of caffeoyl shikimate esterase in lignin biosynthesis is controversial. Here we show that its role in lignification differs significantly among species; it is totally dispensable in Brachypodium, significantly involved in Arabidopsis and critically involved in Medicago.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27037613</pmid><doi>10.1111/tpj.13177</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2016-06, Vol.86 (5), p.363-375 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_1808643494 |
source | MEDLINE; Wiley Journals; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | Arabidopsis Arabidopsis Proteins - genetics Arabidopsis thaliana Biosynthesis Biosynthetic Pathways Botany Brachypodium Brachypodium - genetics Brachypodium distachyon Carboxylic Ester Hydrolases - genetics Enzymes esterase Esterases - genetics Esterases - metabolism Gene Expression Regulation, Plant Lignin Lignin - analysis Lignin - chemistry Lignin - metabolism lignin biosynthesis Medicago Medicago truncatula Medicago truncatula - enzymology Medicago truncatula - genetics Medicago truncatula - growth & development Mutagenesis, Insertional Nicotiana - enzymology Nicotiana - genetics Nicotiana - growth & development Panicum - enzymology Panicum - genetics Panicum virgatum Phenotype Phylogeny Plant Proteins - genetics Plant Proteins - metabolism Plant Stems - enzymology Plant Stems - genetics Plant Stems - growth & development Plants, Genetically Modified Poaceae Populus - enzymology Populus - genetics Populus deltoides Recombinant Proteins Salicaceae Shikimic Acid - chemistry Shikimic Acid - metabolism switchgrass Zea mays Zea mays - genetics |
title | An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20essential%20role%20of%20caffeoyl%20shikimate%20esterase%20in%20monolignol%20biosynthesis%20in%20Medicago%20truncatula&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Ha,%20Chan%20Man&rft.date=2016-06&rft.volume=86&rft.issue=5&rft.spage=363&rft.epage=375&rft.pages=363-375&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.13177&rft_dat=%3Cproquest_cross%3E1808643494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799214312&rft_id=info:pmid/27037613&rfr_iscdi=true |