Engagement of the Aryl Hydrocarbon Receptor in Mycobacterium tuberculosis-Infected Macrophages Has Pleiotropic Effects on Innate Immune Signaling

Understanding the mechanisms of host macrophage responses to Mycobacterium tuberculosis is essential for uncovering potential avenues of intervention to boost host resistance to infection. Macrophage transcriptome profiling revealed that M. tuberculosis infection strongly induced the expression of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2015-11, Vol.195 (9), p.4479-4491
Hauptverfasser: Memari, Babak, Bouttier, Manuella, Dimitrov, Vassil, Ouellette, Marc, Behr, Marcel A, Fritz, Jorg H, White, John H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the mechanisms of host macrophage responses to Mycobacterium tuberculosis is essential for uncovering potential avenues of intervention to boost host resistance to infection. Macrophage transcriptome profiling revealed that M. tuberculosis infection strongly induced the expression of several enzymes controlling tryptophan catabolism. These included IDO1 and tryptophan 2,3-dioxygenase, which catalyze the rate-limiting step in the kynurenine pathway, producing ligands for the aryl hydrocarbon receptor (AHR). The AHR and heterodimeric partners AHR nuclear translocator and RELB are robustly expressed, and AHR and RELB levels increased further during infection. Infection enhanced AHR/AHR nuclear translocator and AHR/RELB DNA binding and stimulated the expression of AHR target genes, including that encoding the inflammatory cytokine IL-1β. AHR target gene expression was further enhanced by exogenous kynurenine, and exogenous tryptophan, kynurenine, or synthetic agonist indirubin reduced mycobacterial viability. Comparative expression profiling revealed that AHR ablation diminished the expression of numerous genes implicated in innate immune responses, including several cytokines. Notably, AHR depletion reduced the expression of IL23A and IL12B transcripts, which encode subunits of IL-23, a macrophage cytokine that stimulates production of IL-22 by innate lymphoid cells. AHR directly induced IL23A transcription in human and mouse macrophages through near-upstream enhancer regions. Taken together, these findings show that AHR signaling is strongly engaged in M. tuberculosis-infected macrophages and has widespread effects on innate immune responses. Moreover, they reveal a cascade of AHR-driven innate immune signaling, because IL-1β and IL-23 stimulate T cell subsets producing IL-22, another direct target of AHR transactivation.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1501141