Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells
Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is “uncharted territory”. This study offers unique insights into the inte...
Gespeichert in:
Veröffentlicht in: | Clinical & experimental metastasis 2016-08, Vol.33 (6), p.563-588 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 588 |
---|---|
container_issue | 6 |
container_start_page | 563 |
container_title | Clinical & experimental metastasis |
container_volume | 33 |
creator | Alasmari, Abeer Lin, Shih-Chun Dibart, Serge Salih, Erdjan |
description | Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is “uncharted territory”. This study offers unique insights into the interplay between cancer stem cells and osteocytes/osteoblasts and mesenchymal stem cells using a three-dimensional (3D) live cancer-bone interactive model. We provide extraordinary cryptic details of the biological events that occur as a result of alendronate (ALN) treatment using 3D live cancer-bone model systems under specific bone remodeling stages. While cancer cells are susceptible to BP treatment in the absence of bone, they are totally unaffected in the presence of bone. Cancer cells colonize live bone irrespective of whether the bone is committed to bone resorption or formation and hence, cancer-bone metastasis/interactions are though to be “independent of bone remodeling stages”. In our 3D live bone model systems, ALN inhibited bone resorption at the osteoclast differentiation level through effects of mineral-bound ALN on osteocytes and osteoblasts. The mineral-bound ALN rendered bone incapable of osteoblast differentiation, while cancer cells colonize the bone with striking morphological adaptations which led to a conclusion that a direct anti-cancer effect of BPs in a “live or in vivo” bone microenvironment is implausible. The above studies were complemented with mass spectrometric analysis of the media from cancer-bone organ cultures in the absence and presence of ALN. The mineral-bound ALN impacts the bone organs by limiting transformation of mesenchymal stem cells to osteoblasts and leads to diminished endosteal cell population and degenerated osteocytes within the mineralized bone matrix. |
doi_str_mv | 10.1007/s10585-016-9798-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808637651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808637651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-285fd4d6d75ff4f8dffd0f87d0824950057863141c261189fb9c7af9736387bd3</originalsourceid><addsrcrecordid>eNqNkUtrFjEUhoMo9mv1B7iRgBs3sedkJrelFq1CwY2uw0wuOuWb5DOZEfrvm2GqiCC4CDlwnvPm8hDyAuENAqjLiiC0YICSGWU0k4_IAYXqmOJKPiYH4JIz0EafkfNabwGgV0o_JWdcoRC6hwNZ3-UU6Dy5kkP6OZWc5pAWNgc_DUvwtIQ61WVILtAcqduKQl04HitdMh2nevqet5UaXemQPJ3m0-AWmhMdt-hcl5DdXetetmreZ5-RJ3E41vD8Yb8gXz-8_3L1kd18vv509faGuR7EwrgW0fdeeiVi7KP2MXqIWnnQvDcCQCgtO-zRcYmoTRyNU0M0qpOdVqPvLsjrPfdU8o811MXOU91uMKSQ12pRQwtQUuD_oL2WSpiuoa_-Qm_zWlJ7SKMQURoheaNwp9rX1lpCtKcyzUO5swh202d3fbbps5s-K9vMy4fkdWwKfk_88tUAvgO1tdK3UP44-p-p9zykpgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811169562</pqid></control><display><type>article</type><title>Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Alasmari, Abeer ; Lin, Shih-Chun ; Dibart, Serge ; Salih, Erdjan</creator><creatorcontrib>Alasmari, Abeer ; Lin, Shih-Chun ; Dibart, Serge ; Salih, Erdjan</creatorcontrib><description>Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is “uncharted territory”. This study offers unique insights into the interplay between cancer stem cells and osteocytes/osteoblasts and mesenchymal stem cells using a three-dimensional (3D) live cancer-bone interactive model. We provide extraordinary cryptic details of the biological events that occur as a result of alendronate (ALN) treatment using 3D live cancer-bone model systems under specific bone remodeling stages. While cancer cells are susceptible to BP treatment in the absence of bone, they are totally unaffected in the presence of bone. Cancer cells colonize live bone irrespective of whether the bone is committed to bone resorption or formation and hence, cancer-bone metastasis/interactions are though to be “independent of bone remodeling stages”. In our 3D live bone model systems, ALN inhibited bone resorption at the osteoclast differentiation level through effects of mineral-bound ALN on osteocytes and osteoblasts. The mineral-bound ALN rendered bone incapable of osteoblast differentiation, while cancer cells colonize the bone with striking morphological adaptations which led to a conclusion that a direct anti-cancer effect of BPs in a “live or in vivo” bone microenvironment is implausible. The above studies were complemented with mass spectrometric analysis of the media from cancer-bone organ cultures in the absence and presence of ALN. The mineral-bound ALN impacts the bone organs by limiting transformation of mesenchymal stem cells to osteoblasts and leads to diminished endosteal cell population and degenerated osteocytes within the mineralized bone matrix.</description><identifier>ISSN: 0262-0898</identifier><identifier>EISSN: 1573-7276</identifier><identifier>DOI: 10.1007/s10585-016-9798-6</identifier><identifier>PMID: 27155840</identifier><identifier>CODEN: CEXMD2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Bone Density Conservation Agents - pharmacology ; Bone Neoplasms - drug therapy ; Bone Neoplasms - secondary ; Bone Remodeling - drug effects ; Bone Resorption - drug therapy ; Bone Resorption - pathology ; Breast Neoplasms - drug therapy ; Breast Neoplasms - pathology ; Cancer Research ; Cell Differentiation - drug effects ; Coculture Techniques ; Diphosphonates - pharmacology ; Hematology ; Humans ; Male ; Mesenchymal Stromal Cells - drug effects ; Mesenchymal Stromal Cells - pathology ; Neoplastic Stem Cells - drug effects ; Neoplastic Stem Cells - pathology ; Oncology ; Osteocytes - drug effects ; Osteocytes - pathology ; Osteogenesis - drug effects ; Prostatic Neoplasms - drug therapy ; Prostatic Neoplasms - pathology ; Research Paper ; Surgical Oncology ; Tumor Cells, Cultured ; Tumor Microenvironment - drug effects</subject><ispartof>Clinical & experimental metastasis, 2016-08, Vol.33 (6), p.563-588</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-285fd4d6d75ff4f8dffd0f87d0824950057863141c261189fb9c7af9736387bd3</citedby><cites>FETCH-LOGICAL-c405t-285fd4d6d75ff4f8dffd0f87d0824950057863141c261189fb9c7af9736387bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10585-016-9798-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10585-016-9798-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27155840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alasmari, Abeer</creatorcontrib><creatorcontrib>Lin, Shih-Chun</creatorcontrib><creatorcontrib>Dibart, Serge</creatorcontrib><creatorcontrib>Salih, Erdjan</creatorcontrib><title>Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells</title><title>Clinical & experimental metastasis</title><addtitle>Clin Exp Metastasis</addtitle><addtitle>Clin Exp Metastasis</addtitle><description>Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is “uncharted territory”. This study offers unique insights into the interplay between cancer stem cells and osteocytes/osteoblasts and mesenchymal stem cells using a three-dimensional (3D) live cancer-bone interactive model. We provide extraordinary cryptic details of the biological events that occur as a result of alendronate (ALN) treatment using 3D live cancer-bone model systems under specific bone remodeling stages. While cancer cells are susceptible to BP treatment in the absence of bone, they are totally unaffected in the presence of bone. Cancer cells colonize live bone irrespective of whether the bone is committed to bone resorption or formation and hence, cancer-bone metastasis/interactions are though to be “independent of bone remodeling stages”. In our 3D live bone model systems, ALN inhibited bone resorption at the osteoclast differentiation level through effects of mineral-bound ALN on osteocytes and osteoblasts. The mineral-bound ALN rendered bone incapable of osteoblast differentiation, while cancer cells colonize the bone with striking morphological adaptations which led to a conclusion that a direct anti-cancer effect of BPs in a “live or in vivo” bone microenvironment is implausible. The above studies were complemented with mass spectrometric analysis of the media from cancer-bone organ cultures in the absence and presence of ALN. The mineral-bound ALN impacts the bone organs by limiting transformation of mesenchymal stem cells to osteoblasts and leads to diminished endosteal cell population and degenerated osteocytes within the mineralized bone matrix.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone Density Conservation Agents - pharmacology</subject><subject>Bone Neoplasms - drug therapy</subject><subject>Bone Neoplasms - secondary</subject><subject>Bone Remodeling - drug effects</subject><subject>Bone Resorption - drug therapy</subject><subject>Bone Resorption - pathology</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer Research</subject><subject>Cell Differentiation - drug effects</subject><subject>Coculture Techniques</subject><subject>Diphosphonates - pharmacology</subject><subject>Hematology</subject><subject>Humans</subject><subject>Male</subject><subject>Mesenchymal Stromal Cells - drug effects</subject><subject>Mesenchymal Stromal Cells - pathology</subject><subject>Neoplastic Stem Cells - drug effects</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Oncology</subject><subject>Osteocytes - drug effects</subject><subject>Osteocytes - pathology</subject><subject>Osteogenesis - drug effects</subject><subject>Prostatic Neoplasms - drug therapy</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Research Paper</subject><subject>Surgical Oncology</subject><subject>Tumor Cells, Cultured</subject><subject>Tumor Microenvironment - drug effects</subject><issn>0262-0898</issn><issn>1573-7276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtrFjEUhoMo9mv1B7iRgBs3sedkJrelFq1CwY2uw0wuOuWb5DOZEfrvm2GqiCC4CDlwnvPm8hDyAuENAqjLiiC0YICSGWU0k4_IAYXqmOJKPiYH4JIz0EafkfNabwGgV0o_JWdcoRC6hwNZ3-UU6Dy5kkP6OZWc5pAWNgc_DUvwtIQ61WVILtAcqduKQl04HitdMh2nevqet5UaXemQPJ3m0-AWmhMdt-hcl5DdXetetmreZ5-RJ3E41vD8Yb8gXz-8_3L1kd18vv509faGuR7EwrgW0fdeeiVi7KP2MXqIWnnQvDcCQCgtO-zRcYmoTRyNU0M0qpOdVqPvLsjrPfdU8o811MXOU91uMKSQ12pRQwtQUuD_oL2WSpiuoa_-Qm_zWlJ7SKMQURoheaNwp9rX1lpCtKcyzUO5swh202d3fbbps5s-K9vMy4fkdWwKfk_88tUAvgO1tdK3UP44-p-p9zykpgg</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Alasmari, Abeer</creator><creator>Lin, Shih-Chun</creator><creator>Dibart, Serge</creator><creator>Salih, Erdjan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20160801</creationdate><title>Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells</title><author>Alasmari, Abeer ; Lin, Shih-Chun ; Dibart, Serge ; Salih, Erdjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-285fd4d6d75ff4f8dffd0f87d0824950057863141c261189fb9c7af9736387bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone Density Conservation Agents - pharmacology</topic><topic>Bone Neoplasms - drug therapy</topic><topic>Bone Neoplasms - secondary</topic><topic>Bone Remodeling - drug effects</topic><topic>Bone Resorption - drug therapy</topic><topic>Bone Resorption - pathology</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer Research</topic><topic>Cell Differentiation - drug effects</topic><topic>Coculture Techniques</topic><topic>Diphosphonates - pharmacology</topic><topic>Hematology</topic><topic>Humans</topic><topic>Male</topic><topic>Mesenchymal Stromal Cells - drug effects</topic><topic>Mesenchymal Stromal Cells - pathology</topic><topic>Neoplastic Stem Cells - drug effects</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Oncology</topic><topic>Osteocytes - drug effects</topic><topic>Osteocytes - pathology</topic><topic>Osteogenesis - drug effects</topic><topic>Prostatic Neoplasms - drug therapy</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Research Paper</topic><topic>Surgical Oncology</topic><topic>Tumor Cells, Cultured</topic><topic>Tumor Microenvironment - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alasmari, Abeer</creatorcontrib><creatorcontrib>Lin, Shih-Chun</creatorcontrib><creatorcontrib>Dibart, Serge</creatorcontrib><creatorcontrib>Salih, Erdjan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical & experimental metastasis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alasmari, Abeer</au><au>Lin, Shih-Chun</au><au>Dibart, Serge</au><au>Salih, Erdjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells</atitle><jtitle>Clinical & experimental metastasis</jtitle><stitle>Clin Exp Metastasis</stitle><addtitle>Clin Exp Metastasis</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>33</volume><issue>6</issue><spage>563</spage><epage>588</epage><pages>563-588</pages><issn>0262-0898</issn><eissn>1573-7276</eissn><coden>CEXMD2</coden><abstract>Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is “uncharted territory”. This study offers unique insights into the interplay between cancer stem cells and osteocytes/osteoblasts and mesenchymal stem cells using a three-dimensional (3D) live cancer-bone interactive model. We provide extraordinary cryptic details of the biological events that occur as a result of alendronate (ALN) treatment using 3D live cancer-bone model systems under specific bone remodeling stages. While cancer cells are susceptible to BP treatment in the absence of bone, they are totally unaffected in the presence of bone. Cancer cells colonize live bone irrespective of whether the bone is committed to bone resorption or formation and hence, cancer-bone metastasis/interactions are though to be “independent of bone remodeling stages”. In our 3D live bone model systems, ALN inhibited bone resorption at the osteoclast differentiation level through effects of mineral-bound ALN on osteocytes and osteoblasts. The mineral-bound ALN rendered bone incapable of osteoblast differentiation, while cancer cells colonize the bone with striking morphological adaptations which led to a conclusion that a direct anti-cancer effect of BPs in a “live or in vivo” bone microenvironment is implausible. The above studies were complemented with mass spectrometric analysis of the media from cancer-bone organ cultures in the absence and presence of ALN. The mineral-bound ALN impacts the bone organs by limiting transformation of mesenchymal stem cells to osteoblasts and leads to diminished endosteal cell population and degenerated osteocytes within the mineralized bone matrix.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>27155840</pmid><doi>10.1007/s10585-016-9798-6</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0262-0898 |
ispartof | Clinical & experimental metastasis, 2016-08, Vol.33 (6), p.563-588 |
issn | 0262-0898 1573-7276 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808637651 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Biomedical and Life Sciences Biomedicine Bone Density Conservation Agents - pharmacology Bone Neoplasms - drug therapy Bone Neoplasms - secondary Bone Remodeling - drug effects Bone Resorption - drug therapy Bone Resorption - pathology Breast Neoplasms - drug therapy Breast Neoplasms - pathology Cancer Research Cell Differentiation - drug effects Coculture Techniques Diphosphonates - pharmacology Hematology Humans Male Mesenchymal Stromal Cells - drug effects Mesenchymal Stromal Cells - pathology Neoplastic Stem Cells - drug effects Neoplastic Stem Cells - pathology Oncology Osteocytes - drug effects Osteocytes - pathology Osteogenesis - drug effects Prostatic Neoplasms - drug therapy Prostatic Neoplasms - pathology Research Paper Surgical Oncology Tumor Cells, Cultured Tumor Microenvironment - drug effects |
title | Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bone%20microenvironment-mediated%20resistance%20of%20cancer%20cells%20to%20bisphosphonates%20and%20impact%20on%20bone%20osteocytes/stem%20cells&rft.jtitle=Clinical%20&%20experimental%20metastasis&rft.au=Alasmari,%20Abeer&rft.date=2016-08-01&rft.volume=33&rft.issue=6&rft.spage=563&rft.epage=588&rft.pages=563-588&rft.issn=0262-0898&rft.eissn=1573-7276&rft.coden=CEXMD2&rft_id=info:doi/10.1007/s10585-016-9798-6&rft_dat=%3Cproquest_cross%3E1808637651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811169562&rft_id=info:pmid/27155840&rfr_iscdi=true |