Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells

Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is “uncharted territory”. This study offers unique insights into the inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical & experimental metastasis 2016-08, Vol.33 (6), p.563-588
Hauptverfasser: Alasmari, Abeer, Lin, Shih-Chun, Dibart, Serge, Salih, Erdjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 588
container_issue 6
container_start_page 563
container_title Clinical & experimental metastasis
container_volume 33
creator Alasmari, Abeer
Lin, Shih-Chun
Dibart, Serge
Salih, Erdjan
description Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is “uncharted territory”. This study offers unique insights into the interplay between cancer stem cells and osteocytes/osteoblasts and mesenchymal stem cells using a three-dimensional (3D) live cancer-bone interactive model. We provide extraordinary cryptic details of the biological events that occur as a result of alendronate (ALN) treatment using 3D live cancer-bone model systems under specific bone remodeling stages. While cancer cells are susceptible to BP treatment in the absence of bone, they are totally unaffected in the presence of bone. Cancer cells colonize live bone irrespective of whether the bone is committed to bone resorption or formation and hence, cancer-bone metastasis/interactions are though to be “independent of bone remodeling stages”. In our 3D live bone model systems, ALN inhibited bone resorption at the osteoclast differentiation level through effects of mineral-bound ALN on osteocytes and osteoblasts. The mineral-bound ALN rendered bone incapable of osteoblast differentiation, while cancer cells colonize the bone with striking morphological adaptations which led to a conclusion that a direct anti-cancer effect of BPs in a “live or in vivo” bone microenvironment is implausible. The above studies were complemented with mass spectrometric analysis of the media from cancer-bone organ cultures in the absence and presence of ALN. The mineral-bound ALN impacts the bone organs by limiting transformation of mesenchymal stem cells to osteoblasts and leads to diminished endosteal cell population and degenerated osteocytes within the mineralized bone matrix.
doi_str_mv 10.1007/s10585-016-9798-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808637651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808637651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-285fd4d6d75ff4f8dffd0f87d0824950057863141c261189fb9c7af9736387bd3</originalsourceid><addsrcrecordid>eNqNkUtrFjEUhoMo9mv1B7iRgBs3sedkJrelFq1CwY2uw0wuOuWb5DOZEfrvm2GqiCC4CDlwnvPm8hDyAuENAqjLiiC0YICSGWU0k4_IAYXqmOJKPiYH4JIz0EafkfNabwGgV0o_JWdcoRC6hwNZ3-UU6Dy5kkP6OZWc5pAWNgc_DUvwtIQ61WVILtAcqduKQl04HitdMh2nevqet5UaXemQPJ3m0-AWmhMdt-hcl5DdXetetmreZ5-RJ3E41vD8Yb8gXz-8_3L1kd18vv509faGuR7EwrgW0fdeeiVi7KP2MXqIWnnQvDcCQCgtO-zRcYmoTRyNU0M0qpOdVqPvLsjrPfdU8o811MXOU91uMKSQ12pRQwtQUuD_oL2WSpiuoa_-Qm_zWlJ7SKMQURoheaNwp9rX1lpCtKcyzUO5swh202d3fbbps5s-K9vMy4fkdWwKfk_88tUAvgO1tdK3UP44-p-p9zykpgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811169562</pqid></control><display><type>article</type><title>Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Alasmari, Abeer ; Lin, Shih-Chun ; Dibart, Serge ; Salih, Erdjan</creator><creatorcontrib>Alasmari, Abeer ; Lin, Shih-Chun ; Dibart, Serge ; Salih, Erdjan</creatorcontrib><description>Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is “uncharted territory”. This study offers unique insights into the interplay between cancer stem cells and osteocytes/osteoblasts and mesenchymal stem cells using a three-dimensional (3D) live cancer-bone interactive model. We provide extraordinary cryptic details of the biological events that occur as a result of alendronate (ALN) treatment using 3D live cancer-bone model systems under specific bone remodeling stages. While cancer cells are susceptible to BP treatment in the absence of bone, they are totally unaffected in the presence of bone. Cancer cells colonize live bone irrespective of whether the bone is committed to bone resorption or formation and hence, cancer-bone metastasis/interactions are though to be “independent of bone remodeling stages”. In our 3D live bone model systems, ALN inhibited bone resorption at the osteoclast differentiation level through effects of mineral-bound ALN on osteocytes and osteoblasts. The mineral-bound ALN rendered bone incapable of osteoblast differentiation, while cancer cells colonize the bone with striking morphological adaptations which led to a conclusion that a direct anti-cancer effect of BPs in a “live or in vivo” bone microenvironment is implausible. The above studies were complemented with mass spectrometric analysis of the media from cancer-bone organ cultures in the absence and presence of ALN. The mineral-bound ALN impacts the bone organs by limiting transformation of mesenchymal stem cells to osteoblasts and leads to diminished endosteal cell population and degenerated osteocytes within the mineralized bone matrix.</description><identifier>ISSN: 0262-0898</identifier><identifier>EISSN: 1573-7276</identifier><identifier>DOI: 10.1007/s10585-016-9798-6</identifier><identifier>PMID: 27155840</identifier><identifier>CODEN: CEXMD2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Bone Density Conservation Agents - pharmacology ; Bone Neoplasms - drug therapy ; Bone Neoplasms - secondary ; Bone Remodeling - drug effects ; Bone Resorption - drug therapy ; Bone Resorption - pathology ; Breast Neoplasms - drug therapy ; Breast Neoplasms - pathology ; Cancer Research ; Cell Differentiation - drug effects ; Coculture Techniques ; Diphosphonates - pharmacology ; Hematology ; Humans ; Male ; Mesenchymal Stromal Cells - drug effects ; Mesenchymal Stromal Cells - pathology ; Neoplastic Stem Cells - drug effects ; Neoplastic Stem Cells - pathology ; Oncology ; Osteocytes - drug effects ; Osteocytes - pathology ; Osteogenesis - drug effects ; Prostatic Neoplasms - drug therapy ; Prostatic Neoplasms - pathology ; Research Paper ; Surgical Oncology ; Tumor Cells, Cultured ; Tumor Microenvironment - drug effects</subject><ispartof>Clinical &amp; experimental metastasis, 2016-08, Vol.33 (6), p.563-588</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-285fd4d6d75ff4f8dffd0f87d0824950057863141c261189fb9c7af9736387bd3</citedby><cites>FETCH-LOGICAL-c405t-285fd4d6d75ff4f8dffd0f87d0824950057863141c261189fb9c7af9736387bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10585-016-9798-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10585-016-9798-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27155840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alasmari, Abeer</creatorcontrib><creatorcontrib>Lin, Shih-Chun</creatorcontrib><creatorcontrib>Dibart, Serge</creatorcontrib><creatorcontrib>Salih, Erdjan</creatorcontrib><title>Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells</title><title>Clinical &amp; experimental metastasis</title><addtitle>Clin Exp Metastasis</addtitle><addtitle>Clin Exp Metastasis</addtitle><description>Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is “uncharted territory”. This study offers unique insights into the interplay between cancer stem cells and osteocytes/osteoblasts and mesenchymal stem cells using a three-dimensional (3D) live cancer-bone interactive model. We provide extraordinary cryptic details of the biological events that occur as a result of alendronate (ALN) treatment using 3D live cancer-bone model systems under specific bone remodeling stages. While cancer cells are susceptible to BP treatment in the absence of bone, they are totally unaffected in the presence of bone. Cancer cells colonize live bone irrespective of whether the bone is committed to bone resorption or formation and hence, cancer-bone metastasis/interactions are though to be “independent of bone remodeling stages”. In our 3D live bone model systems, ALN inhibited bone resorption at the osteoclast differentiation level through effects of mineral-bound ALN on osteocytes and osteoblasts. The mineral-bound ALN rendered bone incapable of osteoblast differentiation, while cancer cells colonize the bone with striking morphological adaptations which led to a conclusion that a direct anti-cancer effect of BPs in a “live or in vivo” bone microenvironment is implausible. The above studies were complemented with mass spectrometric analysis of the media from cancer-bone organ cultures in the absence and presence of ALN. The mineral-bound ALN impacts the bone organs by limiting transformation of mesenchymal stem cells to osteoblasts and leads to diminished endosteal cell population and degenerated osteocytes within the mineralized bone matrix.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone Density Conservation Agents - pharmacology</subject><subject>Bone Neoplasms - drug therapy</subject><subject>Bone Neoplasms - secondary</subject><subject>Bone Remodeling - drug effects</subject><subject>Bone Resorption - drug therapy</subject><subject>Bone Resorption - pathology</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer Research</subject><subject>Cell Differentiation - drug effects</subject><subject>Coculture Techniques</subject><subject>Diphosphonates - pharmacology</subject><subject>Hematology</subject><subject>Humans</subject><subject>Male</subject><subject>Mesenchymal Stromal Cells - drug effects</subject><subject>Mesenchymal Stromal Cells - pathology</subject><subject>Neoplastic Stem Cells - drug effects</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Oncology</subject><subject>Osteocytes - drug effects</subject><subject>Osteocytes - pathology</subject><subject>Osteogenesis - drug effects</subject><subject>Prostatic Neoplasms - drug therapy</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Research Paper</subject><subject>Surgical Oncology</subject><subject>Tumor Cells, Cultured</subject><subject>Tumor Microenvironment - drug effects</subject><issn>0262-0898</issn><issn>1573-7276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtrFjEUhoMo9mv1B7iRgBs3sedkJrelFq1CwY2uw0wuOuWb5DOZEfrvm2GqiCC4CDlwnvPm8hDyAuENAqjLiiC0YICSGWU0k4_IAYXqmOJKPiYH4JIz0EafkfNabwGgV0o_JWdcoRC6hwNZ3-UU6Dy5kkP6OZWc5pAWNgc_DUvwtIQ61WVILtAcqduKQl04HitdMh2nevqet5UaXemQPJ3m0-AWmhMdt-hcl5DdXetetmreZ5-RJ3E41vD8Yb8gXz-8_3L1kd18vv509faGuR7EwrgW0fdeeiVi7KP2MXqIWnnQvDcCQCgtO-zRcYmoTRyNU0M0qpOdVqPvLsjrPfdU8o811MXOU91uMKSQ12pRQwtQUuD_oL2WSpiuoa_-Qm_zWlJ7SKMQURoheaNwp9rX1lpCtKcyzUO5swh202d3fbbps5s-K9vMy4fkdWwKfk_88tUAvgO1tdK3UP44-p-p9zykpgg</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Alasmari, Abeer</creator><creator>Lin, Shih-Chun</creator><creator>Dibart, Serge</creator><creator>Salih, Erdjan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20160801</creationdate><title>Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells</title><author>Alasmari, Abeer ; Lin, Shih-Chun ; Dibart, Serge ; Salih, Erdjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-285fd4d6d75ff4f8dffd0f87d0824950057863141c261189fb9c7af9736387bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone Density Conservation Agents - pharmacology</topic><topic>Bone Neoplasms - drug therapy</topic><topic>Bone Neoplasms - secondary</topic><topic>Bone Remodeling - drug effects</topic><topic>Bone Resorption - drug therapy</topic><topic>Bone Resorption - pathology</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer Research</topic><topic>Cell Differentiation - drug effects</topic><topic>Coculture Techniques</topic><topic>Diphosphonates - pharmacology</topic><topic>Hematology</topic><topic>Humans</topic><topic>Male</topic><topic>Mesenchymal Stromal Cells - drug effects</topic><topic>Mesenchymal Stromal Cells - pathology</topic><topic>Neoplastic Stem Cells - drug effects</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Oncology</topic><topic>Osteocytes - drug effects</topic><topic>Osteocytes - pathology</topic><topic>Osteogenesis - drug effects</topic><topic>Prostatic Neoplasms - drug therapy</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Research Paper</topic><topic>Surgical Oncology</topic><topic>Tumor Cells, Cultured</topic><topic>Tumor Microenvironment - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alasmari, Abeer</creatorcontrib><creatorcontrib>Lin, Shih-Chun</creatorcontrib><creatorcontrib>Dibart, Serge</creatorcontrib><creatorcontrib>Salih, Erdjan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical &amp; experimental metastasis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alasmari, Abeer</au><au>Lin, Shih-Chun</au><au>Dibart, Serge</au><au>Salih, Erdjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells</atitle><jtitle>Clinical &amp; experimental metastasis</jtitle><stitle>Clin Exp Metastasis</stitle><addtitle>Clin Exp Metastasis</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>33</volume><issue>6</issue><spage>563</spage><epage>588</epage><pages>563-588</pages><issn>0262-0898</issn><eissn>1573-7276</eissn><coden>CEXMD2</coden><abstract>Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is “uncharted territory”. This study offers unique insights into the interplay between cancer stem cells and osteocytes/osteoblasts and mesenchymal stem cells using a three-dimensional (3D) live cancer-bone interactive model. We provide extraordinary cryptic details of the biological events that occur as a result of alendronate (ALN) treatment using 3D live cancer-bone model systems under specific bone remodeling stages. While cancer cells are susceptible to BP treatment in the absence of bone, they are totally unaffected in the presence of bone. Cancer cells colonize live bone irrespective of whether the bone is committed to bone resorption or formation and hence, cancer-bone metastasis/interactions are though to be “independent of bone remodeling stages”. In our 3D live bone model systems, ALN inhibited bone resorption at the osteoclast differentiation level through effects of mineral-bound ALN on osteocytes and osteoblasts. The mineral-bound ALN rendered bone incapable of osteoblast differentiation, while cancer cells colonize the bone with striking morphological adaptations which led to a conclusion that a direct anti-cancer effect of BPs in a “live or in vivo” bone microenvironment is implausible. The above studies were complemented with mass spectrometric analysis of the media from cancer-bone organ cultures in the absence and presence of ALN. The mineral-bound ALN impacts the bone organs by limiting transformation of mesenchymal stem cells to osteoblasts and leads to diminished endosteal cell population and degenerated osteocytes within the mineralized bone matrix.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>27155840</pmid><doi>10.1007/s10585-016-9798-6</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0262-0898
ispartof Clinical & experimental metastasis, 2016-08, Vol.33 (6), p.563-588
issn 0262-0898
1573-7276
language eng
recordid cdi_proquest_miscellaneous_1808637651
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biomedical and Life Sciences
Biomedicine
Bone Density Conservation Agents - pharmacology
Bone Neoplasms - drug therapy
Bone Neoplasms - secondary
Bone Remodeling - drug effects
Bone Resorption - drug therapy
Bone Resorption - pathology
Breast Neoplasms - drug therapy
Breast Neoplasms - pathology
Cancer Research
Cell Differentiation - drug effects
Coculture Techniques
Diphosphonates - pharmacology
Hematology
Humans
Male
Mesenchymal Stromal Cells - drug effects
Mesenchymal Stromal Cells - pathology
Neoplastic Stem Cells - drug effects
Neoplastic Stem Cells - pathology
Oncology
Osteocytes - drug effects
Osteocytes - pathology
Osteogenesis - drug effects
Prostatic Neoplasms - drug therapy
Prostatic Neoplasms - pathology
Research Paper
Surgical Oncology
Tumor Cells, Cultured
Tumor Microenvironment - drug effects
title Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bone%20microenvironment-mediated%20resistance%20of%20cancer%20cells%20to%20bisphosphonates%20and%20impact%20on%20bone%20osteocytes/stem%20cells&rft.jtitle=Clinical%20&%20experimental%20metastasis&rft.au=Alasmari,%20Abeer&rft.date=2016-08-01&rft.volume=33&rft.issue=6&rft.spage=563&rft.epage=588&rft.pages=563-588&rft.issn=0262-0898&rft.eissn=1573-7276&rft.coden=CEXMD2&rft_id=info:doi/10.1007/s10585-016-9798-6&rft_dat=%3Cproquest_cross%3E1808637651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811169562&rft_id=info:pmid/27155840&rfr_iscdi=true