Dissipative self-assembly of vesicular nanoreactors

Dissipative self-assembly is exploited by nature to control important biological functions, such as cell division, motility and signal transduction. The ability to construct synthetic supramolecular assemblies that require the continuous consumption of energy to remain in the functional state is an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2016-07, Vol.8 (7), p.725-731
Hauptverfasser: Maiti, Subhabrata, Fortunati, Ilaria, Ferrante, Camilla, Scrimin, Paolo, Prins, Leonard J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 731
container_issue 7
container_start_page 725
container_title Nature chemistry
container_volume 8
creator Maiti, Subhabrata
Fortunati, Ilaria
Ferrante, Camilla
Scrimin, Paolo
Prins, Leonard J.
description Dissipative self-assembly is exploited by nature to control important biological functions, such as cell division, motility and signal transduction. The ability to construct synthetic supramolecular assemblies that require the continuous consumption of energy to remain in the functional state is an essential premise for the design of synthetic systems with lifelike properties. Here, we show a new strategy for the dissipative self-assembly of functional supramolecular structures with high structural complexity. It relies on the transient stabilization of vesicles through noncovalent interactions between the surfactants and adenosine triphosphate (ATP), which acts as the chemical fuel. It is shown that the lifetime of the vesicles can be regulated by controlling the hydrolysis rate of ATP. The vesicles sustain a chemical reaction but only as long as chemical fuel is present to keep the system in the out-of-equilibrium state. The lifetime of the vesicles determines the amount of reaction product produced by the system. Dissipative self-assembly processes are energetically uphill and require the continuous consumption of energy. Now, by using ATP as a chemical fuel, the dissipative self-assembly of vesicles has been demonstrated. These transiently formed supramolecular assemblies are able to sustain a chemical reaction and it is shown that the yield depends on the lifetime of the vesicles.
doi_str_mv 10.1038/nchem.2511
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808635723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4099077741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-8dd5896811890ea402c4f2dbcf9185821b273c603cdc6bf664fb14c0a98201a13</originalsourceid><addsrcrecordid>eNqF0MtKAzEUBuAgiq3VjQ8gA25EmZozmWSSpdQrFNzoeshkEp0yl5rTKfTtTS-K6MJsEsjHn5OfkFOgY6BMXrfm3TbjhAPskSFknMcpS9X-95nRATlCnFEqOANxSAZJxgKnMCTstkKs5npRLW2EtnaxRrRNUa-izkVLi5Xpa-2jVredt9osOo_H5MDpGu3Jbh-R1_u7l8ljPH1-eJrcTGOTymwRy7LkUgkJIBW1OqWJSV1SFsYpkFwmUIQxjKDMlEYUTojUFZAaqpVMKGhgI3KxzZ377qO3uMibCo2ta93arsccJJWC8Sxh_9NMSaW4kjLQ81901vW-DR9ZK5WEtVGXW2V8h-ity-e-arRf5UDzdev5pvV83XrAZ7vIvmhs-U2_ag7gagswXLVv1v9482_cJ-hLikg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799222288</pqid></control><display><type>article</type><title>Dissipative self-assembly of vesicular nanoreactors</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Maiti, Subhabrata ; Fortunati, Ilaria ; Ferrante, Camilla ; Scrimin, Paolo ; Prins, Leonard J.</creator><creatorcontrib>Maiti, Subhabrata ; Fortunati, Ilaria ; Ferrante, Camilla ; Scrimin, Paolo ; Prins, Leonard J.</creatorcontrib><description>Dissipative self-assembly is exploited by nature to control important biological functions, such as cell division, motility and signal transduction. The ability to construct synthetic supramolecular assemblies that require the continuous consumption of energy to remain in the functional state is an essential premise for the design of synthetic systems with lifelike properties. Here, we show a new strategy for the dissipative self-assembly of functional supramolecular structures with high structural complexity. It relies on the transient stabilization of vesicles through noncovalent interactions between the surfactants and adenosine triphosphate (ATP), which acts as the chemical fuel. It is shown that the lifetime of the vesicles can be regulated by controlling the hydrolysis rate of ATP. The vesicles sustain a chemical reaction but only as long as chemical fuel is present to keep the system in the out-of-equilibrium state. The lifetime of the vesicles determines the amount of reaction product produced by the system. Dissipative self-assembly processes are energetically uphill and require the continuous consumption of energy. Now, by using ATP as a chemical fuel, the dissipative self-assembly of vesicles has been demonstrated. These transiently formed supramolecular assemblies are able to sustain a chemical reaction and it is shown that the yield depends on the lifetime of the vesicles.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2511</identifier><identifier>PMID: 27325101</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/298/923/966 ; 639/638/403 ; 639/638/541/966 ; 639/638/549 ; 639/925/357/341 ; Adenosine triphosphate ; Analytical Chemistry ; ATP ; Biochemistry ; Cell division ; Chemical fuels ; Chemical reactions ; Chemistry ; Chemistry/Food Science ; Energy consumption ; Energy dissipation ; Inorganic Chemistry ; Nuclear fuels ; Organic Chemistry ; Physical Chemistry ; Self-assembly ; Signal transduction ; Vesicles</subject><ispartof>Nature chemistry, 2016-07, Vol.8 (7), p.725-731</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Jul 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-8dd5896811890ea402c4f2dbcf9185821b273c603cdc6bf664fb14c0a98201a13</citedby><cites>FETCH-LOGICAL-c487t-8dd5896811890ea402c4f2dbcf9185821b273c603cdc6bf664fb14c0a98201a13</cites><orcidid>0000-0002-2554-0762 ; 0000-0001-6664-822X ; 0000-0002-6741-3374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27325101$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maiti, Subhabrata</creatorcontrib><creatorcontrib>Fortunati, Ilaria</creatorcontrib><creatorcontrib>Ferrante, Camilla</creatorcontrib><creatorcontrib>Scrimin, Paolo</creatorcontrib><creatorcontrib>Prins, Leonard J.</creatorcontrib><title>Dissipative self-assembly of vesicular nanoreactors</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Dissipative self-assembly is exploited by nature to control important biological functions, such as cell division, motility and signal transduction. The ability to construct synthetic supramolecular assemblies that require the continuous consumption of energy to remain in the functional state is an essential premise for the design of synthetic systems with lifelike properties. Here, we show a new strategy for the dissipative self-assembly of functional supramolecular structures with high structural complexity. It relies on the transient stabilization of vesicles through noncovalent interactions between the surfactants and adenosine triphosphate (ATP), which acts as the chemical fuel. It is shown that the lifetime of the vesicles can be regulated by controlling the hydrolysis rate of ATP. The vesicles sustain a chemical reaction but only as long as chemical fuel is present to keep the system in the out-of-equilibrium state. The lifetime of the vesicles determines the amount of reaction product produced by the system. Dissipative self-assembly processes are energetically uphill and require the continuous consumption of energy. Now, by using ATP as a chemical fuel, the dissipative self-assembly of vesicles has been demonstrated. These transiently formed supramolecular assemblies are able to sustain a chemical reaction and it is shown that the yield depends on the lifetime of the vesicles.</description><subject>639/638/298/923/966</subject><subject>639/638/403</subject><subject>639/638/541/966</subject><subject>639/638/549</subject><subject>639/925/357/341</subject><subject>Adenosine triphosphate</subject><subject>Analytical Chemistry</subject><subject>ATP</subject><subject>Biochemistry</subject><subject>Cell division</subject><subject>Chemical fuels</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Energy consumption</subject><subject>Energy dissipation</subject><subject>Inorganic Chemistry</subject><subject>Nuclear fuels</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Self-assembly</subject><subject>Signal transduction</subject><subject>Vesicles</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0MtKAzEUBuAgiq3VjQ8gA25EmZozmWSSpdQrFNzoeshkEp0yl5rTKfTtTS-K6MJsEsjHn5OfkFOgY6BMXrfm3TbjhAPskSFknMcpS9X-95nRATlCnFEqOANxSAZJxgKnMCTstkKs5npRLW2EtnaxRrRNUa-izkVLi5Xpa-2jVredt9osOo_H5MDpGu3Jbh-R1_u7l8ljPH1-eJrcTGOTymwRy7LkUgkJIBW1OqWJSV1SFsYpkFwmUIQxjKDMlEYUTojUFZAaqpVMKGhgI3KxzZ377qO3uMibCo2ta93arsccJJWC8Sxh_9NMSaW4kjLQ81901vW-DR9ZK5WEtVGXW2V8h-ity-e-arRf5UDzdev5pvV83XrAZ7vIvmhs-U2_ag7gagswXLVv1v9482_cJ-hLikg</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Maiti, Subhabrata</creator><creator>Fortunati, Ilaria</creator><creator>Ferrante, Camilla</creator><creator>Scrimin, Paolo</creator><creator>Prins, Leonard J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2554-0762</orcidid><orcidid>https://orcid.org/0000-0001-6664-822X</orcidid><orcidid>https://orcid.org/0000-0002-6741-3374</orcidid></search><sort><creationdate>20160701</creationdate><title>Dissipative self-assembly of vesicular nanoreactors</title><author>Maiti, Subhabrata ; Fortunati, Ilaria ; Ferrante, Camilla ; Scrimin, Paolo ; Prins, Leonard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-8dd5896811890ea402c4f2dbcf9185821b273c603cdc6bf664fb14c0a98201a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/638/298/923/966</topic><topic>639/638/403</topic><topic>639/638/541/966</topic><topic>639/638/549</topic><topic>639/925/357/341</topic><topic>Adenosine triphosphate</topic><topic>Analytical Chemistry</topic><topic>ATP</topic><topic>Biochemistry</topic><topic>Cell division</topic><topic>Chemical fuels</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Energy consumption</topic><topic>Energy dissipation</topic><topic>Inorganic Chemistry</topic><topic>Nuclear fuels</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Self-assembly</topic><topic>Signal transduction</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maiti, Subhabrata</creatorcontrib><creatorcontrib>Fortunati, Ilaria</creatorcontrib><creatorcontrib>Ferrante, Camilla</creatorcontrib><creatorcontrib>Scrimin, Paolo</creatorcontrib><creatorcontrib>Prins, Leonard J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maiti, Subhabrata</au><au>Fortunati, Ilaria</au><au>Ferrante, Camilla</au><au>Scrimin, Paolo</au><au>Prins, Leonard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissipative self-assembly of vesicular nanoreactors</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>8</volume><issue>7</issue><spage>725</spage><epage>731</epage><pages>725-731</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Dissipative self-assembly is exploited by nature to control important biological functions, such as cell division, motility and signal transduction. The ability to construct synthetic supramolecular assemblies that require the continuous consumption of energy to remain in the functional state is an essential premise for the design of synthetic systems with lifelike properties. Here, we show a new strategy for the dissipative self-assembly of functional supramolecular structures with high structural complexity. It relies on the transient stabilization of vesicles through noncovalent interactions between the surfactants and adenosine triphosphate (ATP), which acts as the chemical fuel. It is shown that the lifetime of the vesicles can be regulated by controlling the hydrolysis rate of ATP. The vesicles sustain a chemical reaction but only as long as chemical fuel is present to keep the system in the out-of-equilibrium state. The lifetime of the vesicles determines the amount of reaction product produced by the system. Dissipative self-assembly processes are energetically uphill and require the continuous consumption of energy. Now, by using ATP as a chemical fuel, the dissipative self-assembly of vesicles has been demonstrated. These transiently formed supramolecular assemblies are able to sustain a chemical reaction and it is shown that the yield depends on the lifetime of the vesicles.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27325101</pmid><doi>10.1038/nchem.2511</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2554-0762</orcidid><orcidid>https://orcid.org/0000-0001-6664-822X</orcidid><orcidid>https://orcid.org/0000-0002-6741-3374</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2016-07, Vol.8 (7), p.725-731
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_1808635723
source Nature; Alma/SFX Local Collection
subjects 639/638/298/923/966
639/638/403
639/638/541/966
639/638/549
639/925/357/341
Adenosine triphosphate
Analytical Chemistry
ATP
Biochemistry
Cell division
Chemical fuels
Chemical reactions
Chemistry
Chemistry/Food Science
Energy consumption
Energy dissipation
Inorganic Chemistry
Nuclear fuels
Organic Chemistry
Physical Chemistry
Self-assembly
Signal transduction
Vesicles
title Dissipative self-assembly of vesicular nanoreactors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissipative%20self-assembly%20of%20vesicular%20nanoreactors&rft.jtitle=Nature%20chemistry&rft.au=Maiti,%20Subhabrata&rft.date=2016-07-01&rft.volume=8&rft.issue=7&rft.spage=725&rft.epage=731&rft.pages=725-731&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2511&rft_dat=%3Cproquest_cross%3E4099077741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799222288&rft_id=info:pmid/27325101&rfr_iscdi=true