Residue Specific and Chirality Dependent Interactions between Carbon Nanotubes and Flagellin

Flagellum is a lash-like cellular appendage found in many single-celled living organisms. The flagellin protofilaments contain 11-helix dual turn structure in a single flagellum. Each flagellin consists of four sub-domains - two inner domains (D0, D1) and two outer domains (D2, D3). While inner doma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2016-05, Vol.13 (3), p.541-548
Hauptverfasser: Macwan, Isaac G., Zihe Zhao, Sobh, Omar T., Mukerji, Ishita, Dharmadhikari, Bhushan, Patra, Prabir K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 548
container_issue 3
container_start_page 541
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 13
creator Macwan, Isaac G.
Zihe Zhao
Sobh, Omar T.
Mukerji, Ishita
Dharmadhikari, Bhushan
Patra, Prabir K.
description Flagellum is a lash-like cellular appendage found in many single-celled living organisms. The flagellin protofilaments contain 11-helix dual turn structure in a single flagellum. Each flagellin consists of four sub-domains - two inner domains (D0, D1) and two outer domains (D2, D3). While inner domains predominantly consist of α-helices, the outer domains are primarily beta sheets with D3. In flagellum, the outermost sub-domain is the only one that is exposed to the native environment. This study focuses on the interactions of the residues of D3 of an R-type flagellin with 5nm long chiral (5,15) and arm-chair (12,12) single-walled carbon nanotubes (SWNT) using molecular dynamics simulation. It presents the interactive forces between the SWNT and the residues of D3 from the perspectives of size and chirality of the SWNT. It is found that the metallic (arm-chair) SWNT interacts the most with glycine and threonine residues through van der Waals and hydrophobic interactions, whereas the semiconducting (chiral) SWNT interacts largely with the area of protein devoid of glycine by van der Waals, hydrophobic interactions, and hydrogen bonding. This indicates a crucial role that glycine plays in distinguishing metallic from semiconducting SWNTs.
doi_str_mv 10.1109/TCBB.2015.2459696
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808632945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7174990</ieee_id><sourcerecordid>1825498534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-798b401e60e5b8b2d4c91c3f84096ff3a70b17f3f5d142b2879c88173b453fe3</originalsourceid><addsrcrecordid>eNqNkU2L1TAUhoMozof-ABGkMJvZ9JrPJmfpVEcHBgW9S6Ek6Ylm6E2vSYvMv7f1XmfhRlcncJ735YSHkBeMbhij8HrbXl1tOGVqw6WCBppH5JQppWuARj5e31LVy0KckLNS7ijlEqh8Sk645qAaoU_J189YYj9j9WWPPoboK5v6qv0esx3idF-9xT2mHtNU3aQJs_VTHFOpHE4_EVPV2uzGVH20aZxmh-V3-nqw33AYYnpGngQ7FHx-nOdke_1u236obz-9v2nf3NZeKjPVGoyTlGFDUTnjeC89MC-CkRSaEITV1DEdRFA9k9xxo8Ebw7RwUomA4pxcHmr3efwxY5m6XSx-ucAmHOfSMcOVBKOE_A-UmkZwWIr_iWrQXCkl6YJe_IXejXNOy5dXSoE0oM1CsQPl81hKxtDtc9zZfN8x2q0-u9Vnt_rsjj6XzKtj8-x22D8k_ghcgJcHICLiw1ozLQGo-AVZmqIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795948978</pqid></control><display><type>article</type><title>Residue Specific and Chirality Dependent Interactions between Carbon Nanotubes and Flagellin</title><source>IEEE Electronic Library (IEL)</source><creator>Macwan, Isaac G. ; Zihe Zhao ; Sobh, Omar T. ; Mukerji, Ishita ; Dharmadhikari, Bhushan ; Patra, Prabir K.</creator><creatorcontrib>Macwan, Isaac G. ; Zihe Zhao ; Sobh, Omar T. ; Mukerji, Ishita ; Dharmadhikari, Bhushan ; Patra, Prabir K.</creatorcontrib><description>Flagellum is a lash-like cellular appendage found in many single-celled living organisms. The flagellin protofilaments contain 11-helix dual turn structure in a single flagellum. Each flagellin consists of four sub-domains - two inner domains (D0, D1) and two outer domains (D2, D3). While inner domains predominantly consist of α-helices, the outer domains are primarily beta sheets with D3. In flagellum, the outermost sub-domain is the only one that is exposed to the native environment. This study focuses on the interactions of the residues of D3 of an R-type flagellin with 5nm long chiral (5,15) and arm-chair (12,12) single-walled carbon nanotubes (SWNT) using molecular dynamics simulation. It presents the interactive forces between the SWNT and the residues of D3 from the perspectives of size and chirality of the SWNT. It is found that the metallic (arm-chair) SWNT interacts the most with glycine and threonine residues through van der Waals and hydrophobic interactions, whereas the semiconducting (chiral) SWNT interacts largely with the area of protein devoid of glycine by van der Waals, hydrophobic interactions, and hydrogen bonding. This indicates a crucial role that glycine plays in distinguishing metallic from semiconducting SWNTs.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2015.2459696</identifier><identifier>PMID: 27295637</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bacterial Flagellum ; Bioinformatics ; Carbon nanotubes ; Cellular ; Chirality ; Computational biology ; Computer simulation ; Flagellin - chemistry ; Flagellin - metabolism ; Flagellin Domain ; Glycine ; Hydrogen ; Hydrogen Bonding ; Hydrophobicity ; Microorganisms ; Molecular Dynamics ; Molecular Dynamics Simulation ; Nanotube Sorting ; Nanotubes ; Nanotubes, Carbon - chemistry ; Protein engineering ; Proteins ; Residues ; Single wall carbon nanotubes ; Stereoisomerism</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2016-05, Vol.13 (3), p.541-548</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-798b401e60e5b8b2d4c91c3f84096ff3a70b17f3f5d142b2879c88173b453fe3</citedby><cites>FETCH-LOGICAL-c458t-798b401e60e5b8b2d4c91c3f84096ff3a70b17f3f5d142b2879c88173b453fe3</cites><orcidid>0000-0002-2917-793X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7174990$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7174990$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27295637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Macwan, Isaac G.</creatorcontrib><creatorcontrib>Zihe Zhao</creatorcontrib><creatorcontrib>Sobh, Omar T.</creatorcontrib><creatorcontrib>Mukerji, Ishita</creatorcontrib><creatorcontrib>Dharmadhikari, Bhushan</creatorcontrib><creatorcontrib>Patra, Prabir K.</creatorcontrib><title>Residue Specific and Chirality Dependent Interactions between Carbon Nanotubes and Flagellin</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Flagellum is a lash-like cellular appendage found in many single-celled living organisms. The flagellin protofilaments contain 11-helix dual turn structure in a single flagellum. Each flagellin consists of four sub-domains - two inner domains (D0, D1) and two outer domains (D2, D3). While inner domains predominantly consist of α-helices, the outer domains are primarily beta sheets with D3. In flagellum, the outermost sub-domain is the only one that is exposed to the native environment. This study focuses on the interactions of the residues of D3 of an R-type flagellin with 5nm long chiral (5,15) and arm-chair (12,12) single-walled carbon nanotubes (SWNT) using molecular dynamics simulation. It presents the interactive forces between the SWNT and the residues of D3 from the perspectives of size and chirality of the SWNT. It is found that the metallic (arm-chair) SWNT interacts the most with glycine and threonine residues through van der Waals and hydrophobic interactions, whereas the semiconducting (chiral) SWNT interacts largely with the area of protein devoid of glycine by van der Waals, hydrophobic interactions, and hydrogen bonding. This indicates a crucial role that glycine plays in distinguishing metallic from semiconducting SWNTs.</description><subject>Bacterial Flagellum</subject><subject>Bioinformatics</subject><subject>Carbon nanotubes</subject><subject>Cellular</subject><subject>Chirality</subject><subject>Computational biology</subject><subject>Computer simulation</subject><subject>Flagellin - chemistry</subject><subject>Flagellin - metabolism</subject><subject>Flagellin Domain</subject><subject>Glycine</subject><subject>Hydrogen</subject><subject>Hydrogen Bonding</subject><subject>Hydrophobicity</subject><subject>Microorganisms</subject><subject>Molecular Dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Nanotube Sorting</subject><subject>Nanotubes</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Protein engineering</subject><subject>Proteins</subject><subject>Residues</subject><subject>Single wall carbon nanotubes</subject><subject>Stereoisomerism</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU2L1TAUhoMozof-ABGkMJvZ9JrPJmfpVEcHBgW9S6Ek6Ylm6E2vSYvMv7f1XmfhRlcncJ735YSHkBeMbhij8HrbXl1tOGVqw6WCBppH5JQppWuARj5e31LVy0KckLNS7ijlEqh8Sk645qAaoU_J189YYj9j9WWPPoboK5v6qv0esx3idF-9xT2mHtNU3aQJs_VTHFOpHE4_EVPV2uzGVH20aZxmh-V3-nqw33AYYnpGngQ7FHx-nOdke_1u236obz-9v2nf3NZeKjPVGoyTlGFDUTnjeC89MC-CkRSaEITV1DEdRFA9k9xxo8Ebw7RwUomA4pxcHmr3efwxY5m6XSx-ucAmHOfSMcOVBKOE_A-UmkZwWIr_iWrQXCkl6YJe_IXejXNOy5dXSoE0oM1CsQPl81hKxtDtc9zZfN8x2q0-u9Vnt_rsjj6XzKtj8-x22D8k_ghcgJcHICLiw1ozLQGo-AVZmqIo</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Macwan, Isaac G.</creator><creator>Zihe Zhao</creator><creator>Sobh, Omar T.</creator><creator>Mukerji, Ishita</creator><creator>Dharmadhikari, Bhushan</creator><creator>Patra, Prabir K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2917-793X</orcidid></search><sort><creationdate>201605</creationdate><title>Residue Specific and Chirality Dependent Interactions between Carbon Nanotubes and Flagellin</title><author>Macwan, Isaac G. ; Zihe Zhao ; Sobh, Omar T. ; Mukerji, Ishita ; Dharmadhikari, Bhushan ; Patra, Prabir K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-798b401e60e5b8b2d4c91c3f84096ff3a70b17f3f5d142b2879c88173b453fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacterial Flagellum</topic><topic>Bioinformatics</topic><topic>Carbon nanotubes</topic><topic>Cellular</topic><topic>Chirality</topic><topic>Computational biology</topic><topic>Computer simulation</topic><topic>Flagellin - chemistry</topic><topic>Flagellin - metabolism</topic><topic>Flagellin Domain</topic><topic>Glycine</topic><topic>Hydrogen</topic><topic>Hydrogen Bonding</topic><topic>Hydrophobicity</topic><topic>Microorganisms</topic><topic>Molecular Dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Nanotube Sorting</topic><topic>Nanotubes</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Protein engineering</topic><topic>Proteins</topic><topic>Residues</topic><topic>Single wall carbon nanotubes</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macwan, Isaac G.</creatorcontrib><creatorcontrib>Zihe Zhao</creatorcontrib><creatorcontrib>Sobh, Omar T.</creatorcontrib><creatorcontrib>Mukerji, Ishita</creatorcontrib><creatorcontrib>Dharmadhikari, Bhushan</creatorcontrib><creatorcontrib>Patra, Prabir K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Macwan, Isaac G.</au><au>Zihe Zhao</au><au>Sobh, Omar T.</au><au>Mukerji, Ishita</au><au>Dharmadhikari, Bhushan</au><au>Patra, Prabir K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residue Specific and Chirality Dependent Interactions between Carbon Nanotubes and Flagellin</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2016-05</date><risdate>2016</risdate><volume>13</volume><issue>3</issue><spage>541</spage><epage>548</epage><pages>541-548</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Flagellum is a lash-like cellular appendage found in many single-celled living organisms. The flagellin protofilaments contain 11-helix dual turn structure in a single flagellum. Each flagellin consists of four sub-domains - two inner domains (D0, D1) and two outer domains (D2, D3). While inner domains predominantly consist of α-helices, the outer domains are primarily beta sheets with D3. In flagellum, the outermost sub-domain is the only one that is exposed to the native environment. This study focuses on the interactions of the residues of D3 of an R-type flagellin with 5nm long chiral (5,15) and arm-chair (12,12) single-walled carbon nanotubes (SWNT) using molecular dynamics simulation. It presents the interactive forces between the SWNT and the residues of D3 from the perspectives of size and chirality of the SWNT. It is found that the metallic (arm-chair) SWNT interacts the most with glycine and threonine residues through van der Waals and hydrophobic interactions, whereas the semiconducting (chiral) SWNT interacts largely with the area of protein devoid of glycine by van der Waals, hydrophobic interactions, and hydrogen bonding. This indicates a crucial role that glycine plays in distinguishing metallic from semiconducting SWNTs.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27295637</pmid><doi>10.1109/TCBB.2015.2459696</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2917-793X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2016-05, Vol.13 (3), p.541-548
issn 1545-5963
1557-9964
language eng
recordid cdi_proquest_miscellaneous_1808632945
source IEEE Electronic Library (IEL)
subjects Bacterial Flagellum
Bioinformatics
Carbon nanotubes
Cellular
Chirality
Computational biology
Computer simulation
Flagellin - chemistry
Flagellin - metabolism
Flagellin Domain
Glycine
Hydrogen
Hydrogen Bonding
Hydrophobicity
Microorganisms
Molecular Dynamics
Molecular Dynamics Simulation
Nanotube Sorting
Nanotubes
Nanotubes, Carbon - chemistry
Protein engineering
Proteins
Residues
Single wall carbon nanotubes
Stereoisomerism
title Residue Specific and Chirality Dependent Interactions between Carbon Nanotubes and Flagellin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A59%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residue%20Specific%20and%20Chirality%20Dependent%20Interactions%20between%20Carbon%20Nanotubes%20and%20Flagellin&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Macwan,%20Isaac%20G.&rft.date=2016-05&rft.volume=13&rft.issue=3&rft.spage=541&rft.epage=548&rft.pages=541-548&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2015.2459696&rft_dat=%3Cproquest_RIE%3E1825498534%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795948978&rft_id=info:pmid/27295637&rft_ieee_id=7174990&rfr_iscdi=true