Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor

Platelet-activating factor (PAF) is a unique phosphoglycerine that mediates the biological functions of both immune and nervous systems. Excessive PAF plays an important role in neural injury via its specific receptor (PAFR). In this study, we hypothesized that PAF signaling activates reactive glios...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 2016-07, Vol.53 (5), p.3448-3461
Hauptverfasser: Wang, Yuanyi, Gao, Zhongwen, Zhang, Yiping, Feng, Shi-Qing, Liu, Yulong, Shields, Lisa B. E., Zhao, Ying-Zheng, Zhu, Qingsan, Gozal, David, Shields, Christopher B., Cai, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3461
container_issue 5
container_start_page 3448
container_title Molecular neurobiology
container_volume 53
creator Wang, Yuanyi
Gao, Zhongwen
Zhang, Yiping
Feng, Shi-Qing
Liu, Yulong
Shields, Lisa B. E.
Zhao, Ying-Zheng
Zhu, Qingsan
Gozal, David
Shields, Christopher B.
Cai, Jun
description Platelet-activating factor (PAF) is a unique phosphoglycerine that mediates the biological functions of both immune and nervous systems. Excessive PAF plays an important role in neural injury via its specific receptor (PAFR). In this study, we hypothesized that PAF signaling activates reactive gliosis after spinal cord injury (SCI), and blocking the PAF pathway would modify the glia scar formation and promote functional recovery. PAF microinjected into the normal wild-type spinal cord induced a dose-dependent activation of microglia and astrocytes. In the SCI mice, PAFR null mutant mice showed a better functional recovery in grip and rotarod performances than wild-type mice. Although both microglia and astrocytes were activated after SCI in wild-type and PAFR null mutant mice, expressions of IL-6, vimentin, nestin, and GFAP were not significantly elevated in PAFR null mutants. Disruption of PAF signaling inhibited the expressions of proteoglycan CS56 and neurocan (CSPG3). Intriguingly, compared to the wild-type SCI mice, less axonal retraction/dieback at 7 dpi but more NFH-labeled axons at 28 dpi was found in the area adjacent to the epicenter in PAFR null mutant SCI mice. Moreover, treatment with PAFR antagonist Ginkgolide B (GB) at the chronic phase rather than acute phase enhanced the functional recovery in the wild-type SCI mice. These findings suggest that PAF signaling participates in reactive gliosis after SCI, and blocking of this signaling enhances functional recovery and to some extent may promote axon regrowth.
doi_str_mv 10.1007/s12035-015-9263-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808632705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4084912871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-abb7ac349ac96e114ba8a3033797f0ad5ad71696516fdcf7db1f7bc7b2a67aa33</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhUVpaCZpH6CbIuimGyW6li3Zy2HIJIGkLf1Zm2tZTj1opKkkp-Q9-sCRcVpKoXQlwfnOOXAPIa-BnwHn6jxCwUXFOFSsKaRg8hlZQVU1DKAunpMVrxvBlCzrY3IS447zogCuXpDjQvK6LEWzIj_XKRk3YTI9_WRQp_He0Es7-jhGiq6nF-4bOp3V7eSy6h3aDGp_b8ID3Xpr_Y_R3dHPh3FWNj709NrtpiyOjr6frKW3U0KX6O2oDfUD_WhzmTWJrecyTLN7m4t9mHPNIX9ekqMBbTSvnt5T8nV78WVzxW4-XF5v1jdMlwoSw65TqEXZoG6kASg7rFFwIVSjBo59hb0C2cgK5NDrQfUdDKrTqitQKkQhTsm7JfcQ_PfJxNTux6iNteiMn2ILNa-lKBSv_o-qpqpryHfN6Nu_0J2fQr7OQklQJfBMwULp4GMMZmgPYdxjeGiBt_O67bJum9dt53VbmT1vnpKnbm_6345fc2agWICYJXdnwh_V_0x9BAAYsQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795617410</pqid></control><display><type>article</type><title>Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Wang, Yuanyi ; Gao, Zhongwen ; Zhang, Yiping ; Feng, Shi-Qing ; Liu, Yulong ; Shields, Lisa B. E. ; Zhao, Ying-Zheng ; Zhu, Qingsan ; Gozal, David ; Shields, Christopher B. ; Cai, Jun</creator><creatorcontrib>Wang, Yuanyi ; Gao, Zhongwen ; Zhang, Yiping ; Feng, Shi-Qing ; Liu, Yulong ; Shields, Lisa B. E. ; Zhao, Ying-Zheng ; Zhu, Qingsan ; Gozal, David ; Shields, Christopher B. ; Cai, Jun</creatorcontrib><description>Platelet-activating factor (PAF) is a unique phosphoglycerine that mediates the biological functions of both immune and nervous systems. Excessive PAF plays an important role in neural injury via its specific receptor (PAFR). In this study, we hypothesized that PAF signaling activates reactive gliosis after spinal cord injury (SCI), and blocking the PAF pathway would modify the glia scar formation and promote functional recovery. PAF microinjected into the normal wild-type spinal cord induced a dose-dependent activation of microglia and astrocytes. In the SCI mice, PAFR null mutant mice showed a better functional recovery in grip and rotarod performances than wild-type mice. Although both microglia and astrocytes were activated after SCI in wild-type and PAFR null mutant mice, expressions of IL-6, vimentin, nestin, and GFAP were not significantly elevated in PAFR null mutants. Disruption of PAF signaling inhibited the expressions of proteoglycan CS56 and neurocan (CSPG3). Intriguingly, compared to the wild-type SCI mice, less axonal retraction/dieback at 7 dpi but more NFH-labeled axons at 28 dpi was found in the area adjacent to the epicenter in PAFR null mutant SCI mice. Moreover, treatment with PAFR antagonist Ginkgolide B (GB) at the chronic phase rather than acute phase enhanced the functional recovery in the wild-type SCI mice. These findings suggest that PAF signaling participates in reactive gliosis after SCI, and blocking of this signaling enhances functional recovery and to some extent may promote axon regrowth.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-015-9263-6</identifier><identifier>PMID: 26084439</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Astrocytes - drug effects ; Astrocytes - metabolism ; Astrocytes - pathology ; Axons - metabolism ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cervical Vertebrae - drug effects ; Cervical Vertebrae - pathology ; Cervical Vertebrae - physiopathology ; Extracellular Matrix - drug effects ; Extracellular Matrix - metabolism ; Female ; Forelimb - physiopathology ; Gliosis - etiology ; Gliosis - pathology ; Gliosis - physiopathology ; Inflammation - pathology ; Mice, Inbred C57BL ; Mice, Knockout ; Microglia - drug effects ; Microglia - metabolism ; Microglia - pathology ; Mutation ; Myelin Sheath - metabolism ; Neurobiology ; Neurology ; Neuronal Plasticity - drug effects ; Neurons ; Neurosciences ; Platelet Activating Factor - pharmacology ; Platelet Membrane Glycoproteins - antagonists &amp; inhibitors ; Platelet Membrane Glycoproteins - deficiency ; Platelet Membrane Glycoproteins - metabolism ; Receptors, G-Protein-Coupled - antagonists &amp; inhibitors ; Receptors, G-Protein-Coupled - deficiency ; Receptors, G-Protein-Coupled - metabolism ; Recovery of Function - drug effects ; Rice ; Spinal cord injuries ; Spinal Cord Injuries - complications ; Spinal Cord Injuries - pathology ; Spinal Cord Injuries - physiopathology</subject><ispartof>Molecular neurobiology, 2016-07, Vol.53 (5), p.3448-3461</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-abb7ac349ac96e114ba8a3033797f0ad5ad71696516fdcf7db1f7bc7b2a67aa33</citedby><cites>FETCH-LOGICAL-c471t-abb7ac349ac96e114ba8a3033797f0ad5ad71696516fdcf7db1f7bc7b2a67aa33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-015-9263-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-015-9263-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26084439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yuanyi</creatorcontrib><creatorcontrib>Gao, Zhongwen</creatorcontrib><creatorcontrib>Zhang, Yiping</creatorcontrib><creatorcontrib>Feng, Shi-Qing</creatorcontrib><creatorcontrib>Liu, Yulong</creatorcontrib><creatorcontrib>Shields, Lisa B. E.</creatorcontrib><creatorcontrib>Zhao, Ying-Zheng</creatorcontrib><creatorcontrib>Zhu, Qingsan</creatorcontrib><creatorcontrib>Gozal, David</creatorcontrib><creatorcontrib>Shields, Christopher B.</creatorcontrib><creatorcontrib>Cai, Jun</creatorcontrib><title>Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Platelet-activating factor (PAF) is a unique phosphoglycerine that mediates the biological functions of both immune and nervous systems. Excessive PAF plays an important role in neural injury via its specific receptor (PAFR). In this study, we hypothesized that PAF signaling activates reactive gliosis after spinal cord injury (SCI), and blocking the PAF pathway would modify the glia scar formation and promote functional recovery. PAF microinjected into the normal wild-type spinal cord induced a dose-dependent activation of microglia and astrocytes. In the SCI mice, PAFR null mutant mice showed a better functional recovery in grip and rotarod performances than wild-type mice. Although both microglia and astrocytes were activated after SCI in wild-type and PAFR null mutant mice, expressions of IL-6, vimentin, nestin, and GFAP were not significantly elevated in PAFR null mutants. Disruption of PAF signaling inhibited the expressions of proteoglycan CS56 and neurocan (CSPG3). Intriguingly, compared to the wild-type SCI mice, less axonal retraction/dieback at 7 dpi but more NFH-labeled axons at 28 dpi was found in the area adjacent to the epicenter in PAFR null mutant SCI mice. Moreover, treatment with PAFR antagonist Ginkgolide B (GB) at the chronic phase rather than acute phase enhanced the functional recovery in the wild-type SCI mice. These findings suggest that PAF signaling participates in reactive gliosis after SCI, and blocking of this signaling enhances functional recovery and to some extent may promote axon regrowth.</description><subject>Animals</subject><subject>Astrocytes - drug effects</subject><subject>Astrocytes - metabolism</subject><subject>Astrocytes - pathology</subject><subject>Axons - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cervical Vertebrae - drug effects</subject><subject>Cervical Vertebrae - pathology</subject><subject>Cervical Vertebrae - physiopathology</subject><subject>Extracellular Matrix - drug effects</subject><subject>Extracellular Matrix - metabolism</subject><subject>Female</subject><subject>Forelimb - physiopathology</subject><subject>Gliosis - etiology</subject><subject>Gliosis - pathology</subject><subject>Gliosis - physiopathology</subject><subject>Inflammation - pathology</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microglia - drug effects</subject><subject>Microglia - metabolism</subject><subject>Microglia - pathology</subject><subject>Mutation</subject><subject>Myelin Sheath - metabolism</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Platelet Activating Factor - pharmacology</subject><subject>Platelet Membrane Glycoproteins - antagonists &amp; inhibitors</subject><subject>Platelet Membrane Glycoproteins - deficiency</subject><subject>Platelet Membrane Glycoproteins - metabolism</subject><subject>Receptors, G-Protein-Coupled - antagonists &amp; inhibitors</subject><subject>Receptors, G-Protein-Coupled - deficiency</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Recovery of Function - drug effects</subject><subject>Rice</subject><subject>Spinal cord injuries</subject><subject>Spinal Cord Injuries - complications</subject><subject>Spinal Cord Injuries - pathology</subject><subject>Spinal Cord Injuries - physiopathology</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkc1q3DAUhUVpaCZpH6CbIuimGyW6li3Zy2HIJIGkLf1Zm2tZTj1opKkkp-Q9-sCRcVpKoXQlwfnOOXAPIa-BnwHn6jxCwUXFOFSsKaRg8hlZQVU1DKAunpMVrxvBlCzrY3IS447zogCuXpDjQvK6LEWzIj_XKRk3YTI9_WRQp_He0Es7-jhGiq6nF-4bOp3V7eSy6h3aDGp_b8ID3Xpr_Y_R3dHPh3FWNj709NrtpiyOjr6frKW3U0KX6O2oDfUD_WhzmTWJrecyTLN7m4t9mHPNIX9ekqMBbTSvnt5T8nV78WVzxW4-XF5v1jdMlwoSw65TqEXZoG6kASg7rFFwIVSjBo59hb0C2cgK5NDrQfUdDKrTqitQKkQhTsm7JfcQ_PfJxNTux6iNteiMn2ILNa-lKBSv_o-qpqpryHfN6Nu_0J2fQr7OQklQJfBMwULp4GMMZmgPYdxjeGiBt_O67bJum9dt53VbmT1vnpKnbm_6345fc2agWICYJXdnwh_V_0x9BAAYsQg</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Wang, Yuanyi</creator><creator>Gao, Zhongwen</creator><creator>Zhang, Yiping</creator><creator>Feng, Shi-Qing</creator><creator>Liu, Yulong</creator><creator>Shields, Lisa B. E.</creator><creator>Zhao, Ying-Zheng</creator><creator>Zhu, Qingsan</creator><creator>Gozal, David</creator><creator>Shields, Christopher B.</creator><creator>Cai, Jun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20160701</creationdate><title>Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor</title><author>Wang, Yuanyi ; Gao, Zhongwen ; Zhang, Yiping ; Feng, Shi-Qing ; Liu, Yulong ; Shields, Lisa B. E. ; Zhao, Ying-Zheng ; Zhu, Qingsan ; Gozal, David ; Shields, Christopher B. ; Cai, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-abb7ac349ac96e114ba8a3033797f0ad5ad71696516fdcf7db1f7bc7b2a67aa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Astrocytes - drug effects</topic><topic>Astrocytes - metabolism</topic><topic>Astrocytes - pathology</topic><topic>Axons - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cervical Vertebrae - drug effects</topic><topic>Cervical Vertebrae - pathology</topic><topic>Cervical Vertebrae - physiopathology</topic><topic>Extracellular Matrix - drug effects</topic><topic>Extracellular Matrix - metabolism</topic><topic>Female</topic><topic>Forelimb - physiopathology</topic><topic>Gliosis - etiology</topic><topic>Gliosis - pathology</topic><topic>Gliosis - physiopathology</topic><topic>Inflammation - pathology</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microglia - drug effects</topic><topic>Microglia - metabolism</topic><topic>Microglia - pathology</topic><topic>Mutation</topic><topic>Myelin Sheath - metabolism</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Platelet Activating Factor - pharmacology</topic><topic>Platelet Membrane Glycoproteins - antagonists &amp; inhibitors</topic><topic>Platelet Membrane Glycoproteins - deficiency</topic><topic>Platelet Membrane Glycoproteins - metabolism</topic><topic>Receptors, G-Protein-Coupled - antagonists &amp; inhibitors</topic><topic>Receptors, G-Protein-Coupled - deficiency</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Recovery of Function - drug effects</topic><topic>Rice</topic><topic>Spinal cord injuries</topic><topic>Spinal Cord Injuries - complications</topic><topic>Spinal Cord Injuries - pathology</topic><topic>Spinal Cord Injuries - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuanyi</creatorcontrib><creatorcontrib>Gao, Zhongwen</creatorcontrib><creatorcontrib>Zhang, Yiping</creatorcontrib><creatorcontrib>Feng, Shi-Qing</creatorcontrib><creatorcontrib>Liu, Yulong</creatorcontrib><creatorcontrib>Shields, Lisa B. E.</creatorcontrib><creatorcontrib>Zhao, Ying-Zheng</creatorcontrib><creatorcontrib>Zhu, Qingsan</creatorcontrib><creatorcontrib>Gozal, David</creatorcontrib><creatorcontrib>Shields, Christopher B.</creatorcontrib><creatorcontrib>Cai, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuanyi</au><au>Gao, Zhongwen</au><au>Zhang, Yiping</au><au>Feng, Shi-Qing</au><au>Liu, Yulong</au><au>Shields, Lisa B. E.</au><au>Zhao, Ying-Zheng</au><au>Zhu, Qingsan</au><au>Gozal, David</au><au>Shields, Christopher B.</au><au>Cai, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>53</volume><issue>5</issue><spage>3448</spage><epage>3461</epage><pages>3448-3461</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Platelet-activating factor (PAF) is a unique phosphoglycerine that mediates the biological functions of both immune and nervous systems. Excessive PAF plays an important role in neural injury via its specific receptor (PAFR). In this study, we hypothesized that PAF signaling activates reactive gliosis after spinal cord injury (SCI), and blocking the PAF pathway would modify the glia scar formation and promote functional recovery. PAF microinjected into the normal wild-type spinal cord induced a dose-dependent activation of microglia and astrocytes. In the SCI mice, PAFR null mutant mice showed a better functional recovery in grip and rotarod performances than wild-type mice. Although both microglia and astrocytes were activated after SCI in wild-type and PAFR null mutant mice, expressions of IL-6, vimentin, nestin, and GFAP were not significantly elevated in PAFR null mutants. Disruption of PAF signaling inhibited the expressions of proteoglycan CS56 and neurocan (CSPG3). Intriguingly, compared to the wild-type SCI mice, less axonal retraction/dieback at 7 dpi but more NFH-labeled axons at 28 dpi was found in the area adjacent to the epicenter in PAFR null mutant SCI mice. Moreover, treatment with PAFR antagonist Ginkgolide B (GB) at the chronic phase rather than acute phase enhanced the functional recovery in the wild-type SCI mice. These findings suggest that PAF signaling participates in reactive gliosis after SCI, and blocking of this signaling enhances functional recovery and to some extent may promote axon regrowth.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26084439</pmid><doi>10.1007/s12035-015-9263-6</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-7648
ispartof Molecular neurobiology, 2016-07, Vol.53 (5), p.3448-3461
issn 0893-7648
1559-1182
language eng
recordid cdi_proquest_miscellaneous_1808632705
source MEDLINE; SpringerLink Journals
subjects Animals
Astrocytes - drug effects
Astrocytes - metabolism
Astrocytes - pathology
Axons - metabolism
Biomedical and Life Sciences
Biomedicine
Cell Biology
Cervical Vertebrae - drug effects
Cervical Vertebrae - pathology
Cervical Vertebrae - physiopathology
Extracellular Matrix - drug effects
Extracellular Matrix - metabolism
Female
Forelimb - physiopathology
Gliosis - etiology
Gliosis - pathology
Gliosis - physiopathology
Inflammation - pathology
Mice, Inbred C57BL
Mice, Knockout
Microglia - drug effects
Microglia - metabolism
Microglia - pathology
Mutation
Myelin Sheath - metabolism
Neurobiology
Neurology
Neuronal Plasticity - drug effects
Neurons
Neurosciences
Platelet Activating Factor - pharmacology
Platelet Membrane Glycoproteins - antagonists & inhibitors
Platelet Membrane Glycoproteins - deficiency
Platelet Membrane Glycoproteins - metabolism
Receptors, G-Protein-Coupled - antagonists & inhibitors
Receptors, G-Protein-Coupled - deficiency
Receptors, G-Protein-Coupled - metabolism
Recovery of Function - drug effects
Rice
Spinal cord injuries
Spinal Cord Injuries - complications
Spinal Cord Injuries - pathology
Spinal Cord Injuries - physiopathology
title Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T09%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attenuated%20Reactive%20Gliosis%20and%20Enhanced%20Functional%20Recovery%20Following%20Spinal%20Cord%20Injury%20in%20Null%20Mutant%20Mice%20of%20Platelet-Activating%20Factor%20Receptor&rft.jtitle=Molecular%20neurobiology&rft.au=Wang,%20Yuanyi&rft.date=2016-07-01&rft.volume=53&rft.issue=5&rft.spage=3448&rft.epage=3461&rft.pages=3448-3461&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-015-9263-6&rft_dat=%3Cproquest_cross%3E4084912871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795617410&rft_id=info:pmid/26084439&rfr_iscdi=true