What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?
The interplay of natural selection and genetic drift, influenced by geographic isolation, mating systems and population size, determines patterns of genetic diversity within species. The sperm whale provides an interesting example of a longâlived species with few geographic barriers to dispersal....
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2016-06, Vol.25 (12), p.2754-2772 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2772 |
---|---|
container_issue | 12 |
container_start_page | 2754 |
container_title | Molecular ecology |
container_volume | 25 |
creator | Alexander, Alana Debbie Steel Kendra Hoekzema Sarah L. Mesnick Daniel Engelhaupt Iain Kerr Roger Payne C. Scott Baker |
description | The interplay of natural selection and genetic drift, influenced by geographic isolation, mating systems and population size, determines patterns of genetic diversity within species. The sperm whale provides an interesting example of a longâlived species with few geographic barriers to dispersal. Worldwide mtDNA diversity is relatively low, but highly structured among geographic regions and social groups, attributed to female philopatry. However, it is unclear whether this female philopatry is due to geographic regions or social groups, or how this might vary on a worldwide scale. To answer these questions, we combined mtDNA information for 1091 previously published samples with 542 newly obtained DNA profiles (394âbp mtDNA, sex, 13 microsatellites) including the previously unsampled Indian Ocean, and social group information for 541 individuals. We found low mtDNA diversity (ÏÂ =Â 0.430%) reflecting an expansion event |
doi_str_mv | 10.1111/mec.13638 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808630958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808630958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5888-baf1190684d1819b4ef707da9e1d2a51edfdca867e661725eddb03e3412c0c743</originalsourceid><addsrcrecordid>eNqF0ltrFDEUB_Agil2rD34BHfClfZg2J5ncnoostQr1AlqqvoRscqY7dS5rMsO6397YafsgiIFwIPzOHw4nhDwHegT5HHfoj4BLrh-QRa6iZKb6-pAsqJGsBKr5HnmS0jWlwJkQj8keU5QrA7Ag3y7Xbiyavm4n7D2mYlxjsR1iG7ZNwOIKexwbX6QxTn6cIhZDXaQNxq7Yrl2b_cGn9S7hiLHonI-Dx01-n9LhyVPyqHZtwme3dZ9cvDn9snxbnn88e7d8fV56obUuV64GMFTqKoAGs6qwVlQFZxACcwIw1ME7LRVKCYoJDGFFOfIKmKdeVXyfHMy5mzj8nDCNtmuSx7Z1PQ5TsqCplpwaof9PlVFaMVXRTF_9Ra-HKfZ5kBtFORXCZHU4qzx5ShFru4lN5-LOArV_VmPzauzNarJ9cZs4rToM9_JuFxkcz2DbtLj7d5J9f7q8iyznjiaN-Ou-w8UfViquhL38cJavgYp-p1Zl_3L2tRusu4pNshefGQWZf4YG0Iz_BqVSr1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797030559</pqid></control><display><type>article</type><title>What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Alexander, Alana ; Debbie Steel ; Kendra Hoekzema ; Sarah L. Mesnick ; Daniel Engelhaupt ; Iain Kerr ; Roger Payne ; C. Scott Baker</creator><creatorcontrib>Alexander, Alana ; Debbie Steel ; Kendra Hoekzema ; Sarah L. Mesnick ; Daniel Engelhaupt ; Iain Kerr ; Roger Payne ; C. Scott Baker</creatorcontrib><description>The interplay of natural selection and genetic drift, influenced by geographic isolation, mating systems and population size, determines patterns of genetic diversity within species. The sperm whale provides an interesting example of a longâlived species with few geographic barriers to dispersal. Worldwide mtDNA diversity is relatively low, but highly structured among geographic regions and social groups, attributed to female philopatry. However, it is unclear whether this female philopatry is due to geographic regions or social groups, or how this might vary on a worldwide scale. To answer these questions, we combined mtDNA information for 1091 previously published samples with 542 newly obtained DNA profiles (394âbp mtDNA, sex, 13 microsatellites) including the previously unsampled Indian Ocean, and social group information for 541 individuals. We found low mtDNA diversity (ÏÂ =Â 0.430%) reflecting an expansion event <80Â 000Â years bp, but strong differentiation by ocean, among regions within some oceans, and among social groups. In comparison, microsatellite differentiation was low at all levels, presumably due to maleâmediated gene flow. A hierarchical amova showed that regions were important for explaining mtDNA variance in the Indian Ocean, but not Pacific, with social group sampling in the Atlantic too limited to include in analyses. Social groups were important in partitioning mtDNA and microsatellite variance within both oceans. Therefore, both geographic philopatry and social philopatry influence genetic structure in the sperm whale, but their relative importance differs by sex and ocean, reflecting breeding behaviour, geographic features and perhaps a more recent origin of sperm whales in the Pacific. By investigating the interplay of evolutionary forces operating at different temporal and geographic scales, we show that sperm whales are perhaps a unique example of a worldwide population expansion followed by rapid assortment due to female social organization.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.13638</identifier><identifier>PMID: 27037911</identifier><language>eng</language><publisher>England: John Wiley & Sons, Ltd</publisher><subject>Animal behavior ; Animals ; Behavior, Animal ; breeding ; Cetacea ; DNA fingerprinting ; DNA, Mitochondrial - genetics ; Female ; females ; Gene Flow ; genetic drift ; Genetic Variation ; Genetics, Population ; Genotype ; Male ; mating systems ; microsatellite genotypes ; Microsatellite Repeats ; Mitochondrial DNA ; mtDNA ; natural selection ; oceans ; philopatry ; Phylogeography ; Physeter catodon ; Physeter macrocephalus ; Population Density ; population expansion ; Population genetics ; population growth ; population size ; sex-biased dispersal ; Social Behavior ; social structure ; Sperm Whale - genetics ; variance ; Whales & whaling</subject><ispartof>Molecular ecology, 2016-06, Vol.25 (12), p.2754-2772</ispartof><rights>2016 John Wiley & Sons Ltd</rights><rights>2016 John Wiley & Sons Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5888-baf1190684d1819b4ef707da9e1d2a51edfdca867e661725eddb03e3412c0c743</citedby><cites>FETCH-LOGICAL-c5888-baf1190684d1819b4ef707da9e1d2a51edfdca867e661725eddb03e3412c0c743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.13638$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.13638$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27037911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alexander, Alana</creatorcontrib><creatorcontrib>Debbie Steel</creatorcontrib><creatorcontrib>Kendra Hoekzema</creatorcontrib><creatorcontrib>Sarah L. Mesnick</creatorcontrib><creatorcontrib>Daniel Engelhaupt</creatorcontrib><creatorcontrib>Iain Kerr</creatorcontrib><creatorcontrib>Roger Payne</creatorcontrib><creatorcontrib>C. Scott Baker</creatorcontrib><title>What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>The interplay of natural selection and genetic drift, influenced by geographic isolation, mating systems and population size, determines patterns of genetic diversity within species. The sperm whale provides an interesting example of a longâlived species with few geographic barriers to dispersal. Worldwide mtDNA diversity is relatively low, but highly structured among geographic regions and social groups, attributed to female philopatry. However, it is unclear whether this female philopatry is due to geographic regions or social groups, or how this might vary on a worldwide scale. To answer these questions, we combined mtDNA information for 1091 previously published samples with 542 newly obtained DNA profiles (394âbp mtDNA, sex, 13 microsatellites) including the previously unsampled Indian Ocean, and social group information for 541 individuals. We found low mtDNA diversity (ÏÂ =Â 0.430%) reflecting an expansion event <80Â 000Â years bp, but strong differentiation by ocean, among regions within some oceans, and among social groups. In comparison, microsatellite differentiation was low at all levels, presumably due to maleâmediated gene flow. A hierarchical amova showed that regions were important for explaining mtDNA variance in the Indian Ocean, but not Pacific, with social group sampling in the Atlantic too limited to include in analyses. Social groups were important in partitioning mtDNA and microsatellite variance within both oceans. Therefore, both geographic philopatry and social philopatry influence genetic structure in the sperm whale, but their relative importance differs by sex and ocean, reflecting breeding behaviour, geographic features and perhaps a more recent origin of sperm whales in the Pacific. By investigating the interplay of evolutionary forces operating at different temporal and geographic scales, we show that sperm whales are perhaps a unique example of a worldwide population expansion followed by rapid assortment due to female social organization.</description><subject>Animal behavior</subject><subject>Animals</subject><subject>Behavior, Animal</subject><subject>breeding</subject><subject>Cetacea</subject><subject>DNA fingerprinting</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Female</subject><subject>females</subject><subject>Gene Flow</subject><subject>genetic drift</subject><subject>Genetic Variation</subject><subject>Genetics, Population</subject><subject>Genotype</subject><subject>Male</subject><subject>mating systems</subject><subject>microsatellite genotypes</subject><subject>Microsatellite Repeats</subject><subject>Mitochondrial DNA</subject><subject>mtDNA</subject><subject>natural selection</subject><subject>oceans</subject><subject>philopatry</subject><subject>Phylogeography</subject><subject>Physeter catodon</subject><subject>Physeter macrocephalus</subject><subject>Population Density</subject><subject>population expansion</subject><subject>Population genetics</subject><subject>population growth</subject><subject>population size</subject><subject>sex-biased dispersal</subject><subject>Social Behavior</subject><subject>social structure</subject><subject>Sperm Whale - genetics</subject><subject>variance</subject><subject>Whales & whaling</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ltrFDEUB_Agil2rD34BHfClfZg2J5ncnoostQr1AlqqvoRscqY7dS5rMsO6397YafsgiIFwIPzOHw4nhDwHegT5HHfoj4BLrh-QRa6iZKb6-pAsqJGsBKr5HnmS0jWlwJkQj8keU5QrA7Ag3y7Xbiyavm4n7D2mYlxjsR1iG7ZNwOIKexwbX6QxTn6cIhZDXaQNxq7Yrl2b_cGn9S7hiLHonI-Dx01-n9LhyVPyqHZtwme3dZ9cvDn9snxbnn88e7d8fV56obUuV64GMFTqKoAGs6qwVlQFZxACcwIw1ME7LRVKCYoJDGFFOfIKmKdeVXyfHMy5mzj8nDCNtmuSx7Z1PQ5TsqCplpwaof9PlVFaMVXRTF_9Ra-HKfZ5kBtFORXCZHU4qzx5ShFru4lN5-LOArV_VmPzauzNarJ9cZs4rToM9_JuFxkcz2DbtLj7d5J9f7q8iyznjiaN-Ou-w8UfViquhL38cJavgYp-p1Zl_3L2tRusu4pNshefGQWZf4YG0Iz_BqVSr1I</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Alexander, Alana</creator><creator>Debbie Steel</creator><creator>Kendra Hoekzema</creator><creator>Sarah L. Mesnick</creator><creator>Daniel Engelhaupt</creator><creator>Iain Kerr</creator><creator>Roger Payne</creator><creator>C. Scott Baker</creator><general>John Wiley & Sons, Ltd</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201606</creationdate><title>What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?</title><author>Alexander, Alana ; Debbie Steel ; Kendra Hoekzema ; Sarah L. Mesnick ; Daniel Engelhaupt ; Iain Kerr ; Roger Payne ; C. Scott Baker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5888-baf1190684d1819b4ef707da9e1d2a51edfdca867e661725eddb03e3412c0c743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animal behavior</topic><topic>Animals</topic><topic>Behavior, Animal</topic><topic>breeding</topic><topic>Cetacea</topic><topic>DNA fingerprinting</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Female</topic><topic>females</topic><topic>Gene Flow</topic><topic>genetic drift</topic><topic>Genetic Variation</topic><topic>Genetics, Population</topic><topic>Genotype</topic><topic>Male</topic><topic>mating systems</topic><topic>microsatellite genotypes</topic><topic>Microsatellite Repeats</topic><topic>Mitochondrial DNA</topic><topic>mtDNA</topic><topic>natural selection</topic><topic>oceans</topic><topic>philopatry</topic><topic>Phylogeography</topic><topic>Physeter catodon</topic><topic>Physeter macrocephalus</topic><topic>Population Density</topic><topic>population expansion</topic><topic>Population genetics</topic><topic>population growth</topic><topic>population size</topic><topic>sex-biased dispersal</topic><topic>Social Behavior</topic><topic>social structure</topic><topic>Sperm Whale - genetics</topic><topic>variance</topic><topic>Whales & whaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexander, Alana</creatorcontrib><creatorcontrib>Debbie Steel</creatorcontrib><creatorcontrib>Kendra Hoekzema</creatorcontrib><creatorcontrib>Sarah L. Mesnick</creatorcontrib><creatorcontrib>Daniel Engelhaupt</creatorcontrib><creatorcontrib>Iain Kerr</creatorcontrib><creatorcontrib>Roger Payne</creatorcontrib><creatorcontrib>C. Scott Baker</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexander, Alana</au><au>Debbie Steel</au><au>Kendra Hoekzema</au><au>Sarah L. Mesnick</au><au>Daniel Engelhaupt</au><au>Iain Kerr</au><au>Roger Payne</au><au>C. Scott Baker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2016-06</date><risdate>2016</risdate><volume>25</volume><issue>12</issue><spage>2754</spage><epage>2772</epage><pages>2754-2772</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>The interplay of natural selection and genetic drift, influenced by geographic isolation, mating systems and population size, determines patterns of genetic diversity within species. The sperm whale provides an interesting example of a longâlived species with few geographic barriers to dispersal. Worldwide mtDNA diversity is relatively low, but highly structured among geographic regions and social groups, attributed to female philopatry. However, it is unclear whether this female philopatry is due to geographic regions or social groups, or how this might vary on a worldwide scale. To answer these questions, we combined mtDNA information for 1091 previously published samples with 542 newly obtained DNA profiles (394âbp mtDNA, sex, 13 microsatellites) including the previously unsampled Indian Ocean, and social group information for 541 individuals. We found low mtDNA diversity (ÏÂ =Â 0.430%) reflecting an expansion event <80Â 000Â years bp, but strong differentiation by ocean, among regions within some oceans, and among social groups. In comparison, microsatellite differentiation was low at all levels, presumably due to maleâmediated gene flow. A hierarchical amova showed that regions were important for explaining mtDNA variance in the Indian Ocean, but not Pacific, with social group sampling in the Atlantic too limited to include in analyses. Social groups were important in partitioning mtDNA and microsatellite variance within both oceans. Therefore, both geographic philopatry and social philopatry influence genetic structure in the sperm whale, but their relative importance differs by sex and ocean, reflecting breeding behaviour, geographic features and perhaps a more recent origin of sperm whales in the Pacific. By investigating the interplay of evolutionary forces operating at different temporal and geographic scales, we show that sperm whales are perhaps a unique example of a worldwide population expansion followed by rapid assortment due to female social organization.</abstract><cop>England</cop><pub>John Wiley & Sons, Ltd</pub><pmid>27037911</pmid><doi>10.1111/mec.13638</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2016-06, Vol.25 (12), p.2754-2772 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_proquest_miscellaneous_1808630958 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animal behavior Animals Behavior, Animal breeding Cetacea DNA fingerprinting DNA, Mitochondrial - genetics Female females Gene Flow genetic drift Genetic Variation Genetics, Population Genotype Male mating systems microsatellite genotypes Microsatellite Repeats Mitochondrial DNA mtDNA natural selection oceans philopatry Phylogeography Physeter catodon Physeter macrocephalus Population Density population expansion Population genetics population growth population size sex-biased dispersal Social Behavior social structure Sperm Whale - genetics variance Whales & whaling |
title | What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20influences%20the%20worldwide%20genetic%20structure%20of%20sperm%20whales%20(Physeter%20macrocephalus)?&rft.jtitle=Molecular%20ecology&rft.au=Alexander,%20Alana&rft.date=2016-06&rft.volume=25&rft.issue=12&rft.spage=2754&rft.epage=2772&rft.pages=2754-2772&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.13638&rft_dat=%3Cproquest_cross%3E1808630958%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797030559&rft_id=info:pmid/27037911&rfr_iscdi=true |