What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?

The interplay of natural selection and genetic drift, influenced by geographic isolation, mating systems and population size, determines patterns of genetic diversity within species. The sperm whale provides an interesting example of a long‐lived species with few geographic barriers to dispersal....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2016-06, Vol.25 (12), p.2754-2772
Hauptverfasser: Alexander, Alana, Debbie Steel, Kendra Hoekzema, Sarah L. Mesnick, Daniel Engelhaupt, Iain Kerr, Roger Payne, C. Scott Baker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2772
container_issue 12
container_start_page 2754
container_title Molecular ecology
container_volume 25
creator Alexander, Alana
Debbie Steel
Kendra Hoekzema
Sarah L. Mesnick
Daniel Engelhaupt
Iain Kerr
Roger Payne
C. Scott Baker
description The interplay of natural selection and genetic drift, influenced by geographic isolation, mating systems and population size, determines patterns of genetic diversity within species. The sperm whale provides an interesting example of a long‐lived species with few geographic barriers to dispersal. Worldwide mtDNA diversity is relatively low, but highly structured among geographic regions and social groups, attributed to female philopatry. However, it is unclear whether this female philopatry is due to geographic regions or social groups, or how this might vary on a worldwide scale. To answer these questions, we combined mtDNA information for 1091 previously published samples with 542 newly obtained DNA profiles (394‐bp mtDNA, sex, 13 microsatellites) including the previously unsampled Indian Ocean, and social group information for 541 individuals. We found low mtDNA diversity (π = 0.430%) reflecting an expansion event
doi_str_mv 10.1111/mec.13638
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808630958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808630958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5888-baf1190684d1819b4ef707da9e1d2a51edfdca867e661725eddb03e3412c0c743</originalsourceid><addsrcrecordid>eNqF0ltrFDEUB_Agil2rD34BHfClfZg2J5ncnoostQr1AlqqvoRscqY7dS5rMsO6397YafsgiIFwIPzOHw4nhDwHegT5HHfoj4BLrh-QRa6iZKb6-pAsqJGsBKr5HnmS0jWlwJkQj8keU5QrA7Ag3y7Xbiyavm4n7D2mYlxjsR1iG7ZNwOIKexwbX6QxTn6cIhZDXaQNxq7Yrl2b_cGn9S7hiLHonI-Dx01-n9LhyVPyqHZtwme3dZ9cvDn9snxbnn88e7d8fV56obUuV64GMFTqKoAGs6qwVlQFZxACcwIw1ME7LRVKCYoJDGFFOfIKmKdeVXyfHMy5mzj8nDCNtmuSx7Z1PQ5TsqCplpwaof9PlVFaMVXRTF_9Ra-HKfZ5kBtFORXCZHU4qzx5ShFru4lN5-LOArV_VmPzauzNarJ9cZs4rToM9_JuFxkcz2DbtLj7d5J9f7q8iyznjiaN-Ou-w8UfViquhL38cJavgYp-p1Zl_3L2tRusu4pNshefGQWZf4YG0Iz_BqVSr1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797030559</pqid></control><display><type>article</type><title>What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Alexander, Alana ; Debbie Steel ; Kendra Hoekzema ; Sarah L. Mesnick ; Daniel Engelhaupt ; Iain Kerr ; Roger Payne ; C. Scott Baker</creator><creatorcontrib>Alexander, Alana ; Debbie Steel ; Kendra Hoekzema ; Sarah L. Mesnick ; Daniel Engelhaupt ; Iain Kerr ; Roger Payne ; C. Scott Baker</creatorcontrib><description>The interplay of natural selection and genetic drift, influenced by geographic isolation, mating systems and population size, determines patterns of genetic diversity within species. The sperm whale provides an interesting example of a long‐lived species with few geographic barriers to dispersal. Worldwide mtDNA diversity is relatively low, but highly structured among geographic regions and social groups, attributed to female philopatry. However, it is unclear whether this female philopatry is due to geographic regions or social groups, or how this might vary on a worldwide scale. To answer these questions, we combined mtDNA information for 1091 previously published samples with 542 newly obtained DNA profiles (394‐bp mtDNA, sex, 13 microsatellites) including the previously unsampled Indian Ocean, and social group information for 541 individuals. We found low mtDNA diversity (π = 0.430%) reflecting an expansion event &lt;80 000 years bp, but strong differentiation by ocean, among regions within some oceans, and among social groups. In comparison, microsatellite differentiation was low at all levels, presumably due to male‐mediated gene flow. A hierarchical amova showed that regions were important for explaining mtDNA variance in the Indian Ocean, but not Pacific, with social group sampling in the Atlantic too limited to include in analyses. Social groups were important in partitioning mtDNA and microsatellite variance within both oceans. Therefore, both geographic philopatry and social philopatry influence genetic structure in the sperm whale, but their relative importance differs by sex and ocean, reflecting breeding behaviour, geographic features and perhaps a more recent origin of sperm whales in the Pacific. By investigating the interplay of evolutionary forces operating at different temporal and geographic scales, we show that sperm whales are perhaps a unique example of a worldwide population expansion followed by rapid assortment due to female social organization.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.13638</identifier><identifier>PMID: 27037911</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Ltd</publisher><subject>Animal behavior ; Animals ; Behavior, Animal ; breeding ; Cetacea ; DNA fingerprinting ; DNA, Mitochondrial - genetics ; Female ; females ; Gene Flow ; genetic drift ; Genetic Variation ; Genetics, Population ; Genotype ; Male ; mating systems ; microsatellite genotypes ; Microsatellite Repeats ; Mitochondrial DNA ; mtDNA ; natural selection ; oceans ; philopatry ; Phylogeography ; Physeter catodon ; Physeter macrocephalus ; Population Density ; population expansion ; Population genetics ; population growth ; population size ; sex-biased dispersal ; Social Behavior ; social structure ; Sperm Whale - genetics ; variance ; Whales &amp; whaling</subject><ispartof>Molecular ecology, 2016-06, Vol.25 (12), p.2754-2772</ispartof><rights>2016 John Wiley &amp; Sons Ltd</rights><rights>2016 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5888-baf1190684d1819b4ef707da9e1d2a51edfdca867e661725eddb03e3412c0c743</citedby><cites>FETCH-LOGICAL-c5888-baf1190684d1819b4ef707da9e1d2a51edfdca867e661725eddb03e3412c0c743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.13638$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.13638$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27037911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alexander, Alana</creatorcontrib><creatorcontrib>Debbie Steel</creatorcontrib><creatorcontrib>Kendra Hoekzema</creatorcontrib><creatorcontrib>Sarah L. Mesnick</creatorcontrib><creatorcontrib>Daniel Engelhaupt</creatorcontrib><creatorcontrib>Iain Kerr</creatorcontrib><creatorcontrib>Roger Payne</creatorcontrib><creatorcontrib>C. Scott Baker</creatorcontrib><title>What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>The interplay of natural selection and genetic drift, influenced by geographic isolation, mating systems and population size, determines patterns of genetic diversity within species. The sperm whale provides an interesting example of a long‐lived species with few geographic barriers to dispersal. Worldwide mtDNA diversity is relatively low, but highly structured among geographic regions and social groups, attributed to female philopatry. However, it is unclear whether this female philopatry is due to geographic regions or social groups, or how this might vary on a worldwide scale. To answer these questions, we combined mtDNA information for 1091 previously published samples with 542 newly obtained DNA profiles (394‐bp mtDNA, sex, 13 microsatellites) including the previously unsampled Indian Ocean, and social group information for 541 individuals. We found low mtDNA diversity (π = 0.430%) reflecting an expansion event &lt;80 000 years bp, but strong differentiation by ocean, among regions within some oceans, and among social groups. In comparison, microsatellite differentiation was low at all levels, presumably due to male‐mediated gene flow. A hierarchical amova showed that regions were important for explaining mtDNA variance in the Indian Ocean, but not Pacific, with social group sampling in the Atlantic too limited to include in analyses. Social groups were important in partitioning mtDNA and microsatellite variance within both oceans. Therefore, both geographic philopatry and social philopatry influence genetic structure in the sperm whale, but their relative importance differs by sex and ocean, reflecting breeding behaviour, geographic features and perhaps a more recent origin of sperm whales in the Pacific. By investigating the interplay of evolutionary forces operating at different temporal and geographic scales, we show that sperm whales are perhaps a unique example of a worldwide population expansion followed by rapid assortment due to female social organization.</description><subject>Animal behavior</subject><subject>Animals</subject><subject>Behavior, Animal</subject><subject>breeding</subject><subject>Cetacea</subject><subject>DNA fingerprinting</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Female</subject><subject>females</subject><subject>Gene Flow</subject><subject>genetic drift</subject><subject>Genetic Variation</subject><subject>Genetics, Population</subject><subject>Genotype</subject><subject>Male</subject><subject>mating systems</subject><subject>microsatellite genotypes</subject><subject>Microsatellite Repeats</subject><subject>Mitochondrial DNA</subject><subject>mtDNA</subject><subject>natural selection</subject><subject>oceans</subject><subject>philopatry</subject><subject>Phylogeography</subject><subject>Physeter catodon</subject><subject>Physeter macrocephalus</subject><subject>Population Density</subject><subject>population expansion</subject><subject>Population genetics</subject><subject>population growth</subject><subject>population size</subject><subject>sex-biased dispersal</subject><subject>Social Behavior</subject><subject>social structure</subject><subject>Sperm Whale - genetics</subject><subject>variance</subject><subject>Whales &amp; whaling</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ltrFDEUB_Agil2rD34BHfClfZg2J5ncnoostQr1AlqqvoRscqY7dS5rMsO6397YafsgiIFwIPzOHw4nhDwHegT5HHfoj4BLrh-QRa6iZKb6-pAsqJGsBKr5HnmS0jWlwJkQj8keU5QrA7Ag3y7Xbiyavm4n7D2mYlxjsR1iG7ZNwOIKexwbX6QxTn6cIhZDXaQNxq7Yrl2b_cGn9S7hiLHonI-Dx01-n9LhyVPyqHZtwme3dZ9cvDn9snxbnn88e7d8fV56obUuV64GMFTqKoAGs6qwVlQFZxACcwIw1ME7LRVKCYoJDGFFOfIKmKdeVXyfHMy5mzj8nDCNtmuSx7Z1PQ5TsqCplpwaof9PlVFaMVXRTF_9Ra-HKfZ5kBtFORXCZHU4qzx5ShFru4lN5-LOArV_VmPzauzNarJ9cZs4rToM9_JuFxkcz2DbtLj7d5J9f7q8iyznjiaN-Ou-w8UfViquhL38cJavgYp-p1Zl_3L2tRusu4pNshefGQWZf4YG0Iz_BqVSr1I</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Alexander, Alana</creator><creator>Debbie Steel</creator><creator>Kendra Hoekzema</creator><creator>Sarah L. Mesnick</creator><creator>Daniel Engelhaupt</creator><creator>Iain Kerr</creator><creator>Roger Payne</creator><creator>C. Scott Baker</creator><general>John Wiley &amp; Sons, Ltd</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201606</creationdate><title>What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?</title><author>Alexander, Alana ; Debbie Steel ; Kendra Hoekzema ; Sarah L. Mesnick ; Daniel Engelhaupt ; Iain Kerr ; Roger Payne ; C. Scott Baker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5888-baf1190684d1819b4ef707da9e1d2a51edfdca867e661725eddb03e3412c0c743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animal behavior</topic><topic>Animals</topic><topic>Behavior, Animal</topic><topic>breeding</topic><topic>Cetacea</topic><topic>DNA fingerprinting</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Female</topic><topic>females</topic><topic>Gene Flow</topic><topic>genetic drift</topic><topic>Genetic Variation</topic><topic>Genetics, Population</topic><topic>Genotype</topic><topic>Male</topic><topic>mating systems</topic><topic>microsatellite genotypes</topic><topic>Microsatellite Repeats</topic><topic>Mitochondrial DNA</topic><topic>mtDNA</topic><topic>natural selection</topic><topic>oceans</topic><topic>philopatry</topic><topic>Phylogeography</topic><topic>Physeter catodon</topic><topic>Physeter macrocephalus</topic><topic>Population Density</topic><topic>population expansion</topic><topic>Population genetics</topic><topic>population growth</topic><topic>population size</topic><topic>sex-biased dispersal</topic><topic>Social Behavior</topic><topic>social structure</topic><topic>Sperm Whale - genetics</topic><topic>variance</topic><topic>Whales &amp; whaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexander, Alana</creatorcontrib><creatorcontrib>Debbie Steel</creatorcontrib><creatorcontrib>Kendra Hoekzema</creatorcontrib><creatorcontrib>Sarah L. Mesnick</creatorcontrib><creatorcontrib>Daniel Engelhaupt</creatorcontrib><creatorcontrib>Iain Kerr</creatorcontrib><creatorcontrib>Roger Payne</creatorcontrib><creatorcontrib>C. Scott Baker</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexander, Alana</au><au>Debbie Steel</au><au>Kendra Hoekzema</au><au>Sarah L. Mesnick</au><au>Daniel Engelhaupt</au><au>Iain Kerr</au><au>Roger Payne</au><au>C. Scott Baker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2016-06</date><risdate>2016</risdate><volume>25</volume><issue>12</issue><spage>2754</spage><epage>2772</epage><pages>2754-2772</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>The interplay of natural selection and genetic drift, influenced by geographic isolation, mating systems and population size, determines patterns of genetic diversity within species. The sperm whale provides an interesting example of a long‐lived species with few geographic barriers to dispersal. Worldwide mtDNA diversity is relatively low, but highly structured among geographic regions and social groups, attributed to female philopatry. However, it is unclear whether this female philopatry is due to geographic regions or social groups, or how this might vary on a worldwide scale. To answer these questions, we combined mtDNA information for 1091 previously published samples with 542 newly obtained DNA profiles (394‐bp mtDNA, sex, 13 microsatellites) including the previously unsampled Indian Ocean, and social group information for 541 individuals. We found low mtDNA diversity (π = 0.430%) reflecting an expansion event &lt;80 000 years bp, but strong differentiation by ocean, among regions within some oceans, and among social groups. In comparison, microsatellite differentiation was low at all levels, presumably due to male‐mediated gene flow. A hierarchical amova showed that regions were important for explaining mtDNA variance in the Indian Ocean, but not Pacific, with social group sampling in the Atlantic too limited to include in analyses. Social groups were important in partitioning mtDNA and microsatellite variance within both oceans. Therefore, both geographic philopatry and social philopatry influence genetic structure in the sperm whale, but their relative importance differs by sex and ocean, reflecting breeding behaviour, geographic features and perhaps a more recent origin of sperm whales in the Pacific. By investigating the interplay of evolutionary forces operating at different temporal and geographic scales, we show that sperm whales are perhaps a unique example of a worldwide population expansion followed by rapid assortment due to female social organization.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>27037911</pmid><doi>10.1111/mec.13638</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2016-06, Vol.25 (12), p.2754-2772
issn 0962-1083
1365-294X
language eng
recordid cdi_proquest_miscellaneous_1808630958
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animal behavior
Animals
Behavior, Animal
breeding
Cetacea
DNA fingerprinting
DNA, Mitochondrial - genetics
Female
females
Gene Flow
genetic drift
Genetic Variation
Genetics, Population
Genotype
Male
mating systems
microsatellite genotypes
Microsatellite Repeats
Mitochondrial DNA
mtDNA
natural selection
oceans
philopatry
Phylogeography
Physeter catodon
Physeter macrocephalus
Population Density
population expansion
Population genetics
population growth
population size
sex-biased dispersal
Social Behavior
social structure
Sperm Whale - genetics
variance
Whales & whaling
title What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20influences%20the%20worldwide%20genetic%20structure%20of%20sperm%20whales%20(Physeter%20macrocephalus)?&rft.jtitle=Molecular%20ecology&rft.au=Alexander,%20Alana&rft.date=2016-06&rft.volume=25&rft.issue=12&rft.spage=2754&rft.epage=2772&rft.pages=2754-2772&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.13638&rft_dat=%3Cproquest_cross%3E1808630958%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797030559&rft_id=info:pmid/27037911&rfr_iscdi=true