CTBRAIN MACHINE LEARNING PREDICTS STROKE THROMBOLYSIS RESULT

ObjectiveTo determine whether machine learning of acute stroke computerised tomography (CT) images helps predict Symptomatic Intracranial Haemorrhage (SICH), following treatment with intravenous thrombolysis (tPA).MethodsClinical records and CT-scans of 116 acute ischaemic stroke patients treated wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurology, neurosurgery and psychiatry neurosurgery and psychiatry, 2014-10, Vol.85 (10), p.e4.127-e4
Hauptverfasser: Epton, Sarah, Bentley, Paul, Ganesalingam, Jeban, Dias, Anomas, Mahady, Kate, Rinne, Paul, Sharma, Pankaj, Halse, Omid, Mehta, Amrish, Rueckert, Daniel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e4
container_issue 10
container_start_page e4.127
container_title Journal of neurology, neurosurgery and psychiatry
container_volume 85
creator Epton, Sarah
Bentley, Paul
Ganesalingam, Jeban
Dias, Anomas
Mahady, Kate
Rinne, Paul
Sharma, Pankaj
Halse, Omid
Mehta, Amrish
Rueckert, Daniel
description ObjectiveTo determine whether machine learning of acute stroke computerised tomography (CT) images helps predict Symptomatic Intracranial Haemorrhage (SICH), following treatment with intravenous thrombolysis (tPA).MethodsClinical records and CT-scans of 116 acute ischaemic stroke patients treated with intravenous tPA were collected retrospectively, comprising 100 patients who subsequently improved, and 16 who developed SICH. The sample was split into training (n=106) and test sets (n=10), the latter of which contained one SICH-to-be subject every time, repeated with different combinations 1760 times. Raw CT-scans were spatially normalised and input into a Support Vector Machine (SVM), adjusted for clinical severity. Performance of the SVM was compared with validated prognostication tools (SEDAN and HAT scores), by assessing area under receiver operating characteristic curves (AUC), and success on 1/10 forced-choice tests.ResultsAUC of the SVM (0.72) compared favourably with that of SEDAN and HAT scores (0.63-0.71). The SVM also identified 9/16 SICHs on forced-choice tests, as opposed to 1/4 using prognostic scores.ConclusionsThis proof-of-concept study shows that machine learning methods applied to acute stroke CT-scans potentially offers automation, and improved performance in SICH prediction following thrombolysis. Larger-scale cohorts, and incorporation of CT perfusion/angiography data, should be tested with such methods.
doi_str_mv 10.1136/jnnp-2014-309236.212
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808629300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808629300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1242-c1c1b436f4f54b9020df7abe2d13ff67324fd8516cff48aa16cf6f765d81c8cb3</originalsourceid><addsrcrecordid>eNot0E1Pg0AQBuCN0cRa_QceOHqhzuwu2yXxQhELkYIBmuhpAwubtOmXrD3474XUOcxMMm_m8BDyiDBDZOJ5ezicXArIXQY-ZWJGkV6RCXIhXcbg85pMACgdrh7ckjtrtzCW9CfkJawWRZBkzioI4ySLnDQKiizJls5HEb0mYVU6ZVXk75FTxUW-WuTpV5mUThGV67S6Jzem3tnu4X9OyfotqsLYTfNlEgapq5FyOnSNDWfCcOPxxgcKrZnXTUdbZMaIOaPctNJDoY3hsq7HRZi58FqJWuqGTcnT5e-pP36fO_uj9huru92uPnTHs1UoQQrqM4Ahyi9R3R-t7TujTv1mX_e_CkGNWGrEUiOWumCpAYv9AQ_-WG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808629300</pqid></control><display><type>article</type><title>CTBRAIN MACHINE LEARNING PREDICTS STROKE THROMBOLYSIS RESULT</title><source>BMJ Journals - NESLi2</source><creator>Epton, Sarah ; Bentley, Paul ; Ganesalingam, Jeban ; Dias, Anomas ; Mahady, Kate ; Rinne, Paul ; Sharma, Pankaj ; Halse, Omid ; Mehta, Amrish ; Rueckert, Daniel</creator><creatorcontrib>Epton, Sarah ; Bentley, Paul ; Ganesalingam, Jeban ; Dias, Anomas ; Mahady, Kate ; Rinne, Paul ; Sharma, Pankaj ; Halse, Omid ; Mehta, Amrish ; Rueckert, Daniel</creatorcontrib><description>ObjectiveTo determine whether machine learning of acute stroke computerised tomography (CT) images helps predict Symptomatic Intracranial Haemorrhage (SICH), following treatment with intravenous thrombolysis (tPA).MethodsClinical records and CT-scans of 116 acute ischaemic stroke patients treated with intravenous tPA were collected retrospectively, comprising 100 patients who subsequently improved, and 16 who developed SICH. The sample was split into training (n=106) and test sets (n=10), the latter of which contained one SICH-to-be subject every time, repeated with different combinations 1760 times. Raw CT-scans were spatially normalised and input into a Support Vector Machine (SVM), adjusted for clinical severity. Performance of the SVM was compared with validated prognostication tools (SEDAN and HAT scores), by assessing area under receiver operating characteristic curves (AUC), and success on 1/10 forced-choice tests.ResultsAUC of the SVM (0.72) compared favourably with that of SEDAN and HAT scores (0.63-0.71). The SVM also identified 9/16 SICHs on forced-choice tests, as opposed to 1/4 using prognostic scores.ConclusionsThis proof-of-concept study shows that machine learning methods applied to acute stroke CT-scans potentially offers automation, and improved performance in SICH prediction following thrombolysis. Larger-scale cohorts, and incorporation of CT perfusion/angiography data, should be tested with such methods.</description><identifier>ISSN: 0022-3050</identifier><identifier>EISSN: 1468-330X</identifier><identifier>DOI: 10.1136/jnnp-2014-309236.212</identifier><language>eng</language><ispartof>Journal of neurology, neurosurgery and psychiatry, 2014-10, Vol.85 (10), p.e4.127-e4</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3195,27923,27924</link.rule.ids></links><search><creatorcontrib>Epton, Sarah</creatorcontrib><creatorcontrib>Bentley, Paul</creatorcontrib><creatorcontrib>Ganesalingam, Jeban</creatorcontrib><creatorcontrib>Dias, Anomas</creatorcontrib><creatorcontrib>Mahady, Kate</creatorcontrib><creatorcontrib>Rinne, Paul</creatorcontrib><creatorcontrib>Sharma, Pankaj</creatorcontrib><creatorcontrib>Halse, Omid</creatorcontrib><creatorcontrib>Mehta, Amrish</creatorcontrib><creatorcontrib>Rueckert, Daniel</creatorcontrib><title>CTBRAIN MACHINE LEARNING PREDICTS STROKE THROMBOLYSIS RESULT</title><title>Journal of neurology, neurosurgery and psychiatry</title><description>ObjectiveTo determine whether machine learning of acute stroke computerised tomography (CT) images helps predict Symptomatic Intracranial Haemorrhage (SICH), following treatment with intravenous thrombolysis (tPA).MethodsClinical records and CT-scans of 116 acute ischaemic stroke patients treated with intravenous tPA were collected retrospectively, comprising 100 patients who subsequently improved, and 16 who developed SICH. The sample was split into training (n=106) and test sets (n=10), the latter of which contained one SICH-to-be subject every time, repeated with different combinations 1760 times. Raw CT-scans were spatially normalised and input into a Support Vector Machine (SVM), adjusted for clinical severity. Performance of the SVM was compared with validated prognostication tools (SEDAN and HAT scores), by assessing area under receiver operating characteristic curves (AUC), and success on 1/10 forced-choice tests.ResultsAUC of the SVM (0.72) compared favourably with that of SEDAN and HAT scores (0.63-0.71). The SVM also identified 9/16 SICHs on forced-choice tests, as opposed to 1/4 using prognostic scores.ConclusionsThis proof-of-concept study shows that machine learning methods applied to acute stroke CT-scans potentially offers automation, and improved performance in SICH prediction following thrombolysis. Larger-scale cohorts, and incorporation of CT perfusion/angiography data, should be tested with such methods.</description><issn>0022-3050</issn><issn>1468-330X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNot0E1Pg0AQBuCN0cRa_QceOHqhzuwu2yXxQhELkYIBmuhpAwubtOmXrD3474XUOcxMMm_m8BDyiDBDZOJ5ezicXArIXQY-ZWJGkV6RCXIhXcbg85pMACgdrh7ckjtrtzCW9CfkJawWRZBkzioI4ySLnDQKiizJls5HEb0mYVU6ZVXk75FTxUW-WuTpV5mUThGV67S6Jzem3tnu4X9OyfotqsLYTfNlEgapq5FyOnSNDWfCcOPxxgcKrZnXTUdbZMaIOaPctNJDoY3hsq7HRZi58FqJWuqGTcnT5e-pP36fO_uj9huru92uPnTHs1UoQQrqM4Ahyi9R3R-t7TujTv1mX_e_CkGNWGrEUiOWumCpAYv9AQ_-WG8</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Epton, Sarah</creator><creator>Bentley, Paul</creator><creator>Ganesalingam, Jeban</creator><creator>Dias, Anomas</creator><creator>Mahady, Kate</creator><creator>Rinne, Paul</creator><creator>Sharma, Pankaj</creator><creator>Halse, Omid</creator><creator>Mehta, Amrish</creator><creator>Rueckert, Daniel</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>201410</creationdate><title>CTBRAIN MACHINE LEARNING PREDICTS STROKE THROMBOLYSIS RESULT</title><author>Epton, Sarah ; Bentley, Paul ; Ganesalingam, Jeban ; Dias, Anomas ; Mahady, Kate ; Rinne, Paul ; Sharma, Pankaj ; Halse, Omid ; Mehta, Amrish ; Rueckert, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1242-c1c1b436f4f54b9020df7abe2d13ff67324fd8516cff48aa16cf6f765d81c8cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Epton, Sarah</creatorcontrib><creatorcontrib>Bentley, Paul</creatorcontrib><creatorcontrib>Ganesalingam, Jeban</creatorcontrib><creatorcontrib>Dias, Anomas</creatorcontrib><creatorcontrib>Mahady, Kate</creatorcontrib><creatorcontrib>Rinne, Paul</creatorcontrib><creatorcontrib>Sharma, Pankaj</creatorcontrib><creatorcontrib>Halse, Omid</creatorcontrib><creatorcontrib>Mehta, Amrish</creatorcontrib><creatorcontrib>Rueckert, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of neurology, neurosurgery and psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Epton, Sarah</au><au>Bentley, Paul</au><au>Ganesalingam, Jeban</au><au>Dias, Anomas</au><au>Mahady, Kate</au><au>Rinne, Paul</au><au>Sharma, Pankaj</au><au>Halse, Omid</au><au>Mehta, Amrish</au><au>Rueckert, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CTBRAIN MACHINE LEARNING PREDICTS STROKE THROMBOLYSIS RESULT</atitle><jtitle>Journal of neurology, neurosurgery and psychiatry</jtitle><date>2014-10</date><risdate>2014</risdate><volume>85</volume><issue>10</issue><spage>e4.127</spage><epage>e4</epage><pages>e4.127-e4</pages><issn>0022-3050</issn><eissn>1468-330X</eissn><abstract>ObjectiveTo determine whether machine learning of acute stroke computerised tomography (CT) images helps predict Symptomatic Intracranial Haemorrhage (SICH), following treatment with intravenous thrombolysis (tPA).MethodsClinical records and CT-scans of 116 acute ischaemic stroke patients treated with intravenous tPA were collected retrospectively, comprising 100 patients who subsequently improved, and 16 who developed SICH. The sample was split into training (n=106) and test sets (n=10), the latter of which contained one SICH-to-be subject every time, repeated with different combinations 1760 times. Raw CT-scans were spatially normalised and input into a Support Vector Machine (SVM), adjusted for clinical severity. Performance of the SVM was compared with validated prognostication tools (SEDAN and HAT scores), by assessing area under receiver operating characteristic curves (AUC), and success on 1/10 forced-choice tests.ResultsAUC of the SVM (0.72) compared favourably with that of SEDAN and HAT scores (0.63-0.71). The SVM also identified 9/16 SICHs on forced-choice tests, as opposed to 1/4 using prognostic scores.ConclusionsThis proof-of-concept study shows that machine learning methods applied to acute stroke CT-scans potentially offers automation, and improved performance in SICH prediction following thrombolysis. Larger-scale cohorts, and incorporation of CT perfusion/angiography data, should be tested with such methods.</abstract><doi>10.1136/jnnp-2014-309236.212</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3050
ispartof Journal of neurology, neurosurgery and psychiatry, 2014-10, Vol.85 (10), p.e4.127-e4
issn 0022-3050
1468-330X
language eng
recordid cdi_proquest_miscellaneous_1808629300
source BMJ Journals - NESLi2
title CTBRAIN MACHINE LEARNING PREDICTS STROKE THROMBOLYSIS RESULT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CTBRAIN%20MACHINE%20LEARNING%20PREDICTS%20STROKE%20THROMBOLYSIS%20RESULT&rft.jtitle=Journal%20of%20neurology,%20neurosurgery%20and%20psychiatry&rft.au=Epton,%20Sarah&rft.date=2014-10&rft.volume=85&rft.issue=10&rft.spage=e4.127&rft.epage=e4&rft.pages=e4.127-e4&rft.issn=0022-3050&rft.eissn=1468-330X&rft_id=info:doi/10.1136/jnnp-2014-309236.212&rft_dat=%3Cproquest_cross%3E1808629300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808629300&rft_id=info:pmid/&rfr_iscdi=true