Massive turnover rates of fine root detrital carbon in tropical Australian mangroves
Dead fine roots are the major component of organic carbon (C) stored in mangrove forests. We measured the mass and decomposition of fine root detritus in three mangrove forests along an intertidal gradient in tropical Australia to provide the first integrated estimates of the rate of turnover of fin...
Gespeichert in:
Veröffentlicht in: | Oecologia 2016-03, Vol.180 (3), p.841-851 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 851 |
---|---|
container_issue | 3 |
container_start_page | 841 |
container_title | Oecologia |
container_volume | 180 |
creator | Robertson, Alistar I Alongi, Daniel M |
description | Dead fine roots are the major component of organic carbon (C) stored in mangrove forests. We measured the mass and decomposition of fine root detritus in three mangrove forests along an intertidal gradient in tropical Australia to provide the first integrated estimates of the rate of turnover of fine root detritus. The grand mean dry masses of dead fine roots in the forests decreased in the order mid-intertidal Rhizophora (mean 28.4 kg m⁻²), low-intertidal Rhizophora (16.3 kg m⁻²) and high-intertidal Ceriops (mean 8.9 kg m⁻²), and were some of the highest on record. The first-order decay coefficients (day⁻¹) for dead fine roots in the low Rhizophora, mid Rhizophora and high Ceriops forest sites were 0.0014, 0.0017 and 0.0007, respectively, and were the lowest on record. The estimated mean fluxes of C via decomposition of dead fine roots were very high in all forests, decreasing in the order mid Rhizophora (18.8 g C m⁻² day⁻¹), low Rhizophora (8.4 g C m⁻² day⁻¹) and high Ceriops (2.5 g C m⁻² day⁻¹). There were relatively low levels of uncertainty in these estimates when all sources of error were considered. The fluxes of C for the two Rhizophora sites integrate all losses from saprophytic decay and leaching of dissolved C and were 50–200 % higher than the estimated total annual loss of C derived by summing rates of bacterial metabolism and export via groundwater and surface waters in these forests. The significant difference reflects both the very high dead root masses and the incorporation of the impact of fungi in our estimates. |
doi_str_mv | 10.1007/s00442-015-3506-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808628819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A444941731</galeid><jstor_id>48718034</jstor_id><sourcerecordid>A444941731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-9c619c4747795c496774876d9d984a9dc34f521d25dfba9dfb5e8e7f2b461dea3</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEotPCD2ABRGIDixTb8XM5qihUKkKi7dpyEjvyKIkH26nKv-dGKYVBCOSFX9850r33FMULjE4xQuJ9QohSUiHMqpohXqFHxQbTmlRY1epxsUGIqEoyqo6K45R2CGGKGXtaHBHOJJzVprj-bFLyt7bMc5zCrY1lNNmmMrjS-cmWMYRcdjZHn81QtiY2YSr9VOYY9r6Fp-2ccjSDN1M5mqmP4JGeFU-cGZJ9fr-fFDfnH67PPlWXXz5enG0vq5ZjmSsFm2qpoEIo1lLFhaBS8E51SlKjuramjhHcEda5Bu6uYVZa4UhDOe6sqU-Kt6vvPoZvs01Zjz61dhjMZMOcNJZIciIltOO_qBDAclTXgL75A90FaA4UslAYMS4I_UX1ZrDaTy5AG9rFVG8ppYpiUWOgTv9Cwers6NswWefh_UDw7kAATLZ3uTdzSvri6ushi1e2jSGlaJ3eRz-a-F1jpJeA6DUgGgKil4BoBJpX98XNzWi7B8XPRABAViDB19Tb-Fv1_3B9uYp2KYf4YArThBHUS7Ner__OBG366JO-uSIIc4SWCXFR_wA2ltT5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771056724</pqid></control><display><type>article</type><title>Massive turnover rates of fine root detrital carbon in tropical Australian mangroves</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Jstor Complete Legacy</source><creator>Robertson, Alistar I ; Alongi, Daniel M</creator><creatorcontrib>Robertson, Alistar I ; Alongi, Daniel M</creatorcontrib><description>Dead fine roots are the major component of organic carbon (C) stored in mangrove forests. We measured the mass and decomposition of fine root detritus in three mangrove forests along an intertidal gradient in tropical Australia to provide the first integrated estimates of the rate of turnover of fine root detritus. The grand mean dry masses of dead fine roots in the forests decreased in the order mid-intertidal Rhizophora (mean 28.4 kg m⁻²), low-intertidal Rhizophora (16.3 kg m⁻²) and high-intertidal Ceriops (mean 8.9 kg m⁻²), and were some of the highest on record. The first-order decay coefficients (day⁻¹) for dead fine roots in the low Rhizophora, mid Rhizophora and high Ceriops forest sites were 0.0014, 0.0017 and 0.0007, respectively, and were the lowest on record. The estimated mean fluxes of C via decomposition of dead fine roots were very high in all forests, decreasing in the order mid Rhizophora (18.8 g C m⁻² day⁻¹), low Rhizophora (8.4 g C m⁻² day⁻¹) and high Ceriops (2.5 g C m⁻² day⁻¹). There were relatively low levels of uncertainty in these estimates when all sources of error were considered. The fluxes of C for the two Rhizophora sites integrate all losses from saprophytic decay and leaching of dissolved C and were 50–200 % higher than the estimated total annual loss of C derived by summing rates of bacterial metabolism and export via groundwater and surface waters in these forests. The significant difference reflects both the very high dead root masses and the incorporation of the impact of fungi in our estimates.</description><identifier>ISSN: 0029-8549</identifier><identifier>EISSN: 1432-1939</identifier><identifier>DOI: 10.1007/s00442-015-3506-0</identifier><identifier>PMID: 26581419</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Australia ; Bacteria - metabolism ; Biomedical and Life Sciences ; carbon ; Carbon - metabolism ; Carbon Cycle ; Ceriops ; Coastal ecosystems ; Decay ; Decomposition ; Detritus ; Ecology ; Ecosystem ; ECOSYSTEM ECOLOGY – ORIGINAL RESEARCH ; Employee turnover ; fine roots ; Forests ; fungi ; Fungi - metabolism ; groundwater ; Hydrology/Water Resources ; Leaching ; Life Sciences ; littoral zone ; mangrove forests ; Mangroves ; metabolism ; Organic carbon ; Plant Roots - metabolism ; Plant Sciences ; Rhizophora ; Rhizophoraceae - metabolism ; Roots ; saprophytes ; Surface water ; Tropical Climate ; uncertainty ; Wetlands</subject><ispartof>Oecologia, 2016-03, Vol.180 (3), p.841-851</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-9c619c4747795c496774876d9d984a9dc34f521d25dfba9dfb5e8e7f2b461dea3</citedby><cites>FETCH-LOGICAL-c618t-9c619c4747795c496774876d9d984a9dc34f521d25dfba9dfb5e8e7f2b461dea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48718034$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48718034$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,41467,42536,51298,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26581419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robertson, Alistar I</creatorcontrib><creatorcontrib>Alongi, Daniel M</creatorcontrib><title>Massive turnover rates of fine root detrital carbon in tropical Australian mangroves</title><title>Oecologia</title><addtitle>Oecologia</addtitle><addtitle>Oecologia</addtitle><description>Dead fine roots are the major component of organic carbon (C) stored in mangrove forests. We measured the mass and decomposition of fine root detritus in three mangrove forests along an intertidal gradient in tropical Australia to provide the first integrated estimates of the rate of turnover of fine root detritus. The grand mean dry masses of dead fine roots in the forests decreased in the order mid-intertidal Rhizophora (mean 28.4 kg m⁻²), low-intertidal Rhizophora (16.3 kg m⁻²) and high-intertidal Ceriops (mean 8.9 kg m⁻²), and were some of the highest on record. The first-order decay coefficients (day⁻¹) for dead fine roots in the low Rhizophora, mid Rhizophora and high Ceriops forest sites were 0.0014, 0.0017 and 0.0007, respectively, and were the lowest on record. The estimated mean fluxes of C via decomposition of dead fine roots were very high in all forests, decreasing in the order mid Rhizophora (18.8 g C m⁻² day⁻¹), low Rhizophora (8.4 g C m⁻² day⁻¹) and high Ceriops (2.5 g C m⁻² day⁻¹). There were relatively low levels of uncertainty in these estimates when all sources of error were considered. The fluxes of C for the two Rhizophora sites integrate all losses from saprophytic decay and leaching of dissolved C and were 50–200 % higher than the estimated total annual loss of C derived by summing rates of bacterial metabolism and export via groundwater and surface waters in these forests. The significant difference reflects both the very high dead root masses and the incorporation of the impact of fungi in our estimates.</description><subject>Australia</subject><subject>Bacteria - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon Cycle</subject><subject>Ceriops</subject><subject>Coastal ecosystems</subject><subject>Decay</subject><subject>Decomposition</subject><subject>Detritus</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>ECOSYSTEM ECOLOGY – ORIGINAL RESEARCH</subject><subject>Employee turnover</subject><subject>fine roots</subject><subject>Forests</subject><subject>fungi</subject><subject>Fungi - metabolism</subject><subject>groundwater</subject><subject>Hydrology/Water Resources</subject><subject>Leaching</subject><subject>Life Sciences</subject><subject>littoral zone</subject><subject>mangrove forests</subject><subject>Mangroves</subject><subject>metabolism</subject><subject>Organic carbon</subject><subject>Plant Roots - metabolism</subject><subject>Plant Sciences</subject><subject>Rhizophora</subject><subject>Rhizophoraceae - metabolism</subject><subject>Roots</subject><subject>saprophytes</subject><subject>Surface water</subject><subject>Tropical Climate</subject><subject>uncertainty</subject><subject>Wetlands</subject><issn>0029-8549</issn><issn>1432-1939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkktv1DAUhSMEotPCD2ABRGIDixTb8XM5qihUKkKi7dpyEjvyKIkH26nKv-dGKYVBCOSFX9850r33FMULjE4xQuJ9QohSUiHMqpohXqFHxQbTmlRY1epxsUGIqEoyqo6K45R2CGGKGXtaHBHOJJzVprj-bFLyt7bMc5zCrY1lNNmmMrjS-cmWMYRcdjZHn81QtiY2YSr9VOYY9r6Fp-2ccjSDN1M5mqmP4JGeFU-cGZJ9fr-fFDfnH67PPlWXXz5enG0vq5ZjmSsFm2qpoEIo1lLFhaBS8E51SlKjuramjhHcEda5Bu6uYVZa4UhDOe6sqU-Kt6vvPoZvs01Zjz61dhjMZMOcNJZIciIltOO_qBDAclTXgL75A90FaA4UslAYMS4I_UX1ZrDaTy5AG9rFVG8ppYpiUWOgTv9Cwers6NswWefh_UDw7kAATLZ3uTdzSvri6ushi1e2jSGlaJ3eRz-a-F1jpJeA6DUgGgKil4BoBJpX98XNzWi7B8XPRABAViDB19Tb-Fv1_3B9uYp2KYf4YArThBHUS7Ner__OBG366JO-uSIIc4SWCXFR_wA2ltT5</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Robertson, Alistar I</creator><creator>Alongi, Daniel M</creator><general>Springer Berlin Heidelberg</general><general>Springer Science + Business Media</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20160301</creationdate><title>Massive turnover rates of fine root detrital carbon in tropical Australian mangroves</title><author>Robertson, Alistar I ; Alongi, Daniel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-9c619c4747795c496774876d9d984a9dc34f521d25dfba9dfb5e8e7f2b461dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Australia</topic><topic>Bacteria - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon Cycle</topic><topic>Ceriops</topic><topic>Coastal ecosystems</topic><topic>Decay</topic><topic>Decomposition</topic><topic>Detritus</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>ECOSYSTEM ECOLOGY – ORIGINAL RESEARCH</topic><topic>Employee turnover</topic><topic>fine roots</topic><topic>Forests</topic><topic>fungi</topic><topic>Fungi - metabolism</topic><topic>groundwater</topic><topic>Hydrology/Water Resources</topic><topic>Leaching</topic><topic>Life Sciences</topic><topic>littoral zone</topic><topic>mangrove forests</topic><topic>Mangroves</topic><topic>metabolism</topic><topic>Organic carbon</topic><topic>Plant Roots - metabolism</topic><topic>Plant Sciences</topic><topic>Rhizophora</topic><topic>Rhizophoraceae - metabolism</topic><topic>Roots</topic><topic>saprophytes</topic><topic>Surface water</topic><topic>Tropical Climate</topic><topic>uncertainty</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robertson, Alistar I</creatorcontrib><creatorcontrib>Alongi, Daniel M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oecologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robertson, Alistar I</au><au>Alongi, Daniel M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massive turnover rates of fine root detrital carbon in tropical Australian mangroves</atitle><jtitle>Oecologia</jtitle><stitle>Oecologia</stitle><addtitle>Oecologia</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>180</volume><issue>3</issue><spage>841</spage><epage>851</epage><pages>841-851</pages><issn>0029-8549</issn><eissn>1432-1939</eissn><abstract>Dead fine roots are the major component of organic carbon (C) stored in mangrove forests. We measured the mass and decomposition of fine root detritus in three mangrove forests along an intertidal gradient in tropical Australia to provide the first integrated estimates of the rate of turnover of fine root detritus. The grand mean dry masses of dead fine roots in the forests decreased in the order mid-intertidal Rhizophora (mean 28.4 kg m⁻²), low-intertidal Rhizophora (16.3 kg m⁻²) and high-intertidal Ceriops (mean 8.9 kg m⁻²), and were some of the highest on record. The first-order decay coefficients (day⁻¹) for dead fine roots in the low Rhizophora, mid Rhizophora and high Ceriops forest sites were 0.0014, 0.0017 and 0.0007, respectively, and were the lowest on record. The estimated mean fluxes of C via decomposition of dead fine roots were very high in all forests, decreasing in the order mid Rhizophora (18.8 g C m⁻² day⁻¹), low Rhizophora (8.4 g C m⁻² day⁻¹) and high Ceriops (2.5 g C m⁻² day⁻¹). There were relatively low levels of uncertainty in these estimates when all sources of error were considered. The fluxes of C for the two Rhizophora sites integrate all losses from saprophytic decay and leaching of dissolved C and were 50–200 % higher than the estimated total annual loss of C derived by summing rates of bacterial metabolism and export via groundwater and surface waters in these forests. The significant difference reflects both the very high dead root masses and the incorporation of the impact of fungi in our estimates.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26581419</pmid><doi>10.1007/s00442-015-3506-0</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-8549 |
ispartof | Oecologia, 2016-03, Vol.180 (3), p.841-851 |
issn | 0029-8549 1432-1939 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808628819 |
source | MEDLINE; SpringerLink Journals; Jstor Complete Legacy |
subjects | Australia Bacteria - metabolism Biomedical and Life Sciences carbon Carbon - metabolism Carbon Cycle Ceriops Coastal ecosystems Decay Decomposition Detritus Ecology Ecosystem ECOSYSTEM ECOLOGY – ORIGINAL RESEARCH Employee turnover fine roots Forests fungi Fungi - metabolism groundwater Hydrology/Water Resources Leaching Life Sciences littoral zone mangrove forests Mangroves metabolism Organic carbon Plant Roots - metabolism Plant Sciences Rhizophora Rhizophoraceae - metabolism Roots saprophytes Surface water Tropical Climate uncertainty Wetlands |
title | Massive turnover rates of fine root detrital carbon in tropical Australian mangroves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massive%20turnover%20rates%20of%20fine%20root%20detrital%20carbon%20in%20tropical%20Australian%20mangroves&rft.jtitle=Oecologia&rft.au=Robertson,%20Alistar%20I&rft.date=2016-03-01&rft.volume=180&rft.issue=3&rft.spage=841&rft.epage=851&rft.pages=841-851&rft.issn=0029-8549&rft.eissn=1432-1939&rft_id=info:doi/10.1007/s00442-015-3506-0&rft_dat=%3Cgale_proqu%3EA444941731%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771056724&rft_id=info:pmid/26581419&rft_galeid=A444941731&rft_jstor_id=48718034&rfr_iscdi=true |