Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring

Mammographic risk scoring has commonly been automated by extracting a set of handcrafted features from mammograms, and relating the responses directly or indirectly to breast cancer risk. We present a method that learns a feature hierarchy from unlabeled data. When the learned features are used as t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2016-05, Vol.35 (5), p.1322-1331
Hauptverfasser: Kallenberg, Michiel, Petersen, Kersten, Nielsen, Mads, Ng, Andrew Y., Pengfei Diao, Igel, Christian, Vachon, Celine M., Holland, Katharina, Winkel, Rikke Rass, Karssemeijer, Nico, Lillholm, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!