Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring
Mammographic risk scoring has commonly been automated by extracting a set of handcrafted features from mammograms, and relating the responses directly or indirectly to breast cancer risk. We present a method that learns a feature hierarchy from unlabeled data. When the learned features are used as t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2016-05, Vol.35 (5), p.1322-1331 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1331 |
---|---|
container_issue | 5 |
container_start_page | 1322 |
container_title | IEEE transactions on medical imaging |
container_volume | 35 |
creator | Kallenberg, Michiel Petersen, Kersten Nielsen, Mads Ng, Andrew Y. Pengfei Diao Igel, Christian Vachon, Celine M. Holland, Katharina Winkel, Rikke Rass Karssemeijer, Nico Lillholm, Martin |
description | Mammographic risk scoring has commonly been automated by extracting a set of handcrafted features from mammograms, and relating the responses directly or indirectly to breast cancer risk. We present a method that learns a feature hierarchy from unlabeled data. When the learned features are used as the input to a simple classifier, two different tasks can be addressed: i) breast density segmentation, and ii) scoring of mammographic texture. The proposed model learns features at multiple scales. To control the models capacity a novel sparsity regularizer is introduced that incorporates both lifetime and population sparsity. We evaluated our method on three different clinical datasets. Our state-of-the-art results show that the learned breast density scores have a very strong positive relationship with manual ones, and that the learned texture scores are predictive of breast cancer. The model is easy to apply and generalizes to many other segmentation and scoring problems. |
doi_str_mv | 10.1109/TMI.2016.2532122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808627003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7412749</ieee_id><sourcerecordid>1826658482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-f716ec917481785bb7fee7484ae89f741e8528b20f3e5287ae6e6285e0cb221a3</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVpabZp74VCEfSSizeasfXhY5qmTWBDoEmgNyF7x1ula9mR7EL-fRV2k0NPOUmaeeaF0cPYRxBLAFEf31xeLFGAWqIsERBfsQVIaQqU1a_XbCFQm0IIhQfsXUp3QkAlRf2WHaCqQQKKBbO3Ic0jxb8-0Zp_Ixr5ilwMPmz4yThufa5OA_8ayaUp90Py0wO_pk1PYXKTHwJ3Yc0vXd8Pm-jG377lP336w6_bIeaQ9-xN57aJPuzPQ3b7_ezm9LxYXf24OD1ZFW0F5VR0GhS1NejKgDayaXRHlB-VI1N3ugIyEk2DoispX7QjRQqNJNE2iODKQ3a0yx3jcD9TmmzvU0vbrQs0zMmCQaWkqQy-AAUlsMZKvQAVRqEWoszol__Qu2GOIe9s80YaaqMRMiV2VBuHlCJ1doy-d_HBgrCPSm1Wah-V2r3SPPJ5Hzw3Pa2fB54cZuDTDvBE9NzOf4a6qst_A3yi4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787198721</pqid></control><display><type>article</type><title>Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring</title><source>IEEE Electronic Library (IEL)</source><creator>Kallenberg, Michiel ; Petersen, Kersten ; Nielsen, Mads ; Ng, Andrew Y. ; Pengfei Diao ; Igel, Christian ; Vachon, Celine M. ; Holland, Katharina ; Winkel, Rikke Rass ; Karssemeijer, Nico ; Lillholm, Martin</creator><creatorcontrib>Kallenberg, Michiel ; Petersen, Kersten ; Nielsen, Mads ; Ng, Andrew Y. ; Pengfei Diao ; Igel, Christian ; Vachon, Celine M. ; Holland, Katharina ; Winkel, Rikke Rass ; Karssemeijer, Nico ; Lillholm, Martin</creatorcontrib><description>Mammographic risk scoring has commonly been automated by extracting a set of handcrafted features from mammograms, and relating the responses directly or indirectly to breast cancer risk. We present a method that learns a feature hierarchy from unlabeled data. When the learned features are used as the input to a simple classifier, two different tasks can be addressed: i) breast density segmentation, and ii) scoring of mammographic texture. The proposed model learns features at multiple scales. To control the models capacity a novel sparsity regularizer is introduced that incorporates both lifetime and population sparsity. We evaluated our method on three different clinical datasets. Our state-of-the-art results show that the learned breast density scores have a very strong positive relationship with manual ones, and that the learned texture scores are predictive of breast cancer. The model is easy to apply and generalizes to many other segmentation and scoring problems.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2016.2532122</identifier><identifier>PMID: 26915120</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Aged ; Breast ; Breast - diagnostic imaging ; Breast cancer ; Breast Density - physiology ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - epidemiology ; Breasts ; Computer architecture ; deep learning ; Density ; Female ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image segmentation ; Machine learning ; mammograms ; Mammography ; Mammography - methods ; Manuals ; Mathematical models ; Middle Aged ; prognosis ; Risk ; risk factor ; Risk Factors ; Scoring ; Segmentation ; Sparsity ; Surface layer ; Texture ; unsupervised feature learning ; Unsupervised Machine Learning</subject><ispartof>IEEE transactions on medical imaging, 2016-05, Vol.35 (5), p.1322-1331</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-f716ec917481785bb7fee7484ae89f741e8528b20f3e5287ae6e6285e0cb221a3</citedby><cites>FETCH-LOGICAL-c413t-f716ec917481785bb7fee7484ae89f741e8528b20f3e5287ae6e6285e0cb221a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7412749$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7412749$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26915120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kallenberg, Michiel</creatorcontrib><creatorcontrib>Petersen, Kersten</creatorcontrib><creatorcontrib>Nielsen, Mads</creatorcontrib><creatorcontrib>Ng, Andrew Y.</creatorcontrib><creatorcontrib>Pengfei Diao</creatorcontrib><creatorcontrib>Igel, Christian</creatorcontrib><creatorcontrib>Vachon, Celine M.</creatorcontrib><creatorcontrib>Holland, Katharina</creatorcontrib><creatorcontrib>Winkel, Rikke Rass</creatorcontrib><creatorcontrib>Karssemeijer, Nico</creatorcontrib><creatorcontrib>Lillholm, Martin</creatorcontrib><title>Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Mammographic risk scoring has commonly been automated by extracting a set of handcrafted features from mammograms, and relating the responses directly or indirectly to breast cancer risk. We present a method that learns a feature hierarchy from unlabeled data. When the learned features are used as the input to a simple classifier, two different tasks can be addressed: i) breast density segmentation, and ii) scoring of mammographic texture. The proposed model learns features at multiple scales. To control the models capacity a novel sparsity regularizer is introduced that incorporates both lifetime and population sparsity. We evaluated our method on three different clinical datasets. Our state-of-the-art results show that the learned breast density scores have a very strong positive relationship with manual ones, and that the learned texture scores are predictive of breast cancer. The model is easy to apply and generalizes to many other segmentation and scoring problems.</description><subject>Adult</subject><subject>Aged</subject><subject>Breast</subject><subject>Breast - diagnostic imaging</subject><subject>Breast cancer</subject><subject>Breast Density - physiology</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - epidemiology</subject><subject>Breasts</subject><subject>Computer architecture</subject><subject>deep learning</subject><subject>Density</subject><subject>Female</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>mammograms</subject><subject>Mammography</subject><subject>Mammography - methods</subject><subject>Manuals</subject><subject>Mathematical models</subject><subject>Middle Aged</subject><subject>prognosis</subject><subject>Risk</subject><subject>risk factor</subject><subject>Risk Factors</subject><subject>Scoring</subject><subject>Segmentation</subject><subject>Sparsity</subject><subject>Surface layer</subject><subject>Texture</subject><subject>unsupervised feature learning</subject><subject>Unsupervised Machine Learning</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1r3DAQhkVpabZp74VCEfSSizeasfXhY5qmTWBDoEmgNyF7x1ula9mR7EL-fRV2k0NPOUmaeeaF0cPYRxBLAFEf31xeLFGAWqIsERBfsQVIaQqU1a_XbCFQm0IIhQfsXUp3QkAlRf2WHaCqQQKKBbO3Ic0jxb8-0Zp_Ixr5ilwMPmz4yThufa5OA_8ayaUp90Py0wO_pk1PYXKTHwJ3Yc0vXd8Pm-jG377lP336w6_bIeaQ9-xN57aJPuzPQ3b7_ezm9LxYXf24OD1ZFW0F5VR0GhS1NejKgDayaXRHlB-VI1N3ugIyEk2DoispX7QjRQqNJNE2iODKQ3a0yx3jcD9TmmzvU0vbrQs0zMmCQaWkqQy-AAUlsMZKvQAVRqEWoszol__Qu2GOIe9s80YaaqMRMiV2VBuHlCJ1doy-d_HBgrCPSm1Wah-V2r3SPPJ5Hzw3Pa2fB54cZuDTDvBE9NzOf4a6qst_A3yi4w</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Kallenberg, Michiel</creator><creator>Petersen, Kersten</creator><creator>Nielsen, Mads</creator><creator>Ng, Andrew Y.</creator><creator>Pengfei Diao</creator><creator>Igel, Christian</creator><creator>Vachon, Celine M.</creator><creator>Holland, Katharina</creator><creator>Winkel, Rikke Rass</creator><creator>Karssemeijer, Nico</creator><creator>Lillholm, Martin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201605</creationdate><title>Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring</title><author>Kallenberg, Michiel ; Petersen, Kersten ; Nielsen, Mads ; Ng, Andrew Y. ; Pengfei Diao ; Igel, Christian ; Vachon, Celine M. ; Holland, Katharina ; Winkel, Rikke Rass ; Karssemeijer, Nico ; Lillholm, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-f716ec917481785bb7fee7484ae89f741e8528b20f3e5287ae6e6285e0cb221a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Breast</topic><topic>Breast - diagnostic imaging</topic><topic>Breast cancer</topic><topic>Breast Density - physiology</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - epidemiology</topic><topic>Breasts</topic><topic>Computer architecture</topic><topic>deep learning</topic><topic>Density</topic><topic>Female</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>mammograms</topic><topic>Mammography</topic><topic>Mammography - methods</topic><topic>Manuals</topic><topic>Mathematical models</topic><topic>Middle Aged</topic><topic>prognosis</topic><topic>Risk</topic><topic>risk factor</topic><topic>Risk Factors</topic><topic>Scoring</topic><topic>Segmentation</topic><topic>Sparsity</topic><topic>Surface layer</topic><topic>Texture</topic><topic>unsupervised feature learning</topic><topic>Unsupervised Machine Learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Kallenberg, Michiel</creatorcontrib><creatorcontrib>Petersen, Kersten</creatorcontrib><creatorcontrib>Nielsen, Mads</creatorcontrib><creatorcontrib>Ng, Andrew Y.</creatorcontrib><creatorcontrib>Pengfei Diao</creatorcontrib><creatorcontrib>Igel, Christian</creatorcontrib><creatorcontrib>Vachon, Celine M.</creatorcontrib><creatorcontrib>Holland, Katharina</creatorcontrib><creatorcontrib>Winkel, Rikke Rass</creatorcontrib><creatorcontrib>Karssemeijer, Nico</creatorcontrib><creatorcontrib>Lillholm, Martin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kallenberg, Michiel</au><au>Petersen, Kersten</au><au>Nielsen, Mads</au><au>Ng, Andrew Y.</au><au>Pengfei Diao</au><au>Igel, Christian</au><au>Vachon, Celine M.</au><au>Holland, Katharina</au><au>Winkel, Rikke Rass</au><au>Karssemeijer, Nico</au><au>Lillholm, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2016-05</date><risdate>2016</risdate><volume>35</volume><issue>5</issue><spage>1322</spage><epage>1331</epage><pages>1322-1331</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Mammographic risk scoring has commonly been automated by extracting a set of handcrafted features from mammograms, and relating the responses directly or indirectly to breast cancer risk. We present a method that learns a feature hierarchy from unlabeled data. When the learned features are used as the input to a simple classifier, two different tasks can be addressed: i) breast density segmentation, and ii) scoring of mammographic texture. The proposed model learns features at multiple scales. To control the models capacity a novel sparsity regularizer is introduced that incorporates both lifetime and population sparsity. We evaluated our method on three different clinical datasets. Our state-of-the-art results show that the learned breast density scores have a very strong positive relationship with manual ones, and that the learned texture scores are predictive of breast cancer. The model is easy to apply and generalizes to many other segmentation and scoring problems.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26915120</pmid><doi>10.1109/TMI.2016.2532122</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2016-05, Vol.35 (5), p.1322-1331 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_1808627003 |
source | IEEE Electronic Library (IEL) |
subjects | Adult Aged Breast Breast - diagnostic imaging Breast cancer Breast Density - physiology Breast Neoplasms - diagnostic imaging Breast Neoplasms - epidemiology Breasts Computer architecture deep learning Density Female Humans Image Interpretation, Computer-Assisted - methods Image segmentation Machine learning mammograms Mammography Mammography - methods Manuals Mathematical models Middle Aged prognosis Risk risk factor Risk Factors Scoring Segmentation Sparsity Surface layer Texture unsupervised feature learning Unsupervised Machine Learning |
title | Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Deep%20Learning%20Applied%20to%20Breast%20Density%20Segmentation%20and%20Mammographic%20Risk%20Scoring&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Kallenberg,%20Michiel&rft.date=2016-05&rft.volume=35&rft.issue=5&rft.spage=1322&rft.epage=1331&rft.pages=1322-1331&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2016.2532122&rft_dat=%3Cproquest_RIE%3E1826658482%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787198721&rft_id=info:pmid/26915120&rft_ieee_id=7412749&rfr_iscdi=true |