Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring

Mammographic risk scoring has commonly been automated by extracting a set of handcrafted features from mammograms, and relating the responses directly or indirectly to breast cancer risk. We present a method that learns a feature hierarchy from unlabeled data. When the learned features are used as t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2016-05, Vol.35 (5), p.1322-1331
Hauptverfasser: Kallenberg, Michiel, Petersen, Kersten, Nielsen, Mads, Ng, Andrew Y., Pengfei Diao, Igel, Christian, Vachon, Celine M., Holland, Katharina, Winkel, Rikke Rass, Karssemeijer, Nico, Lillholm, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1331
container_issue 5
container_start_page 1322
container_title IEEE transactions on medical imaging
container_volume 35
creator Kallenberg, Michiel
Petersen, Kersten
Nielsen, Mads
Ng, Andrew Y.
Pengfei Diao
Igel, Christian
Vachon, Celine M.
Holland, Katharina
Winkel, Rikke Rass
Karssemeijer, Nico
Lillholm, Martin
description Mammographic risk scoring has commonly been automated by extracting a set of handcrafted features from mammograms, and relating the responses directly or indirectly to breast cancer risk. We present a method that learns a feature hierarchy from unlabeled data. When the learned features are used as the input to a simple classifier, two different tasks can be addressed: i) breast density segmentation, and ii) scoring of mammographic texture. The proposed model learns features at multiple scales. To control the models capacity a novel sparsity regularizer is introduced that incorporates both lifetime and population sparsity. We evaluated our method on three different clinical datasets. Our state-of-the-art results show that the learned breast density scores have a very strong positive relationship with manual ones, and that the learned texture scores are predictive of breast cancer. The model is easy to apply and generalizes to many other segmentation and scoring problems.
doi_str_mv 10.1109/TMI.2016.2532122
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808627003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7412749</ieee_id><sourcerecordid>1826658482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-f716ec917481785bb7fee7484ae89f741e8528b20f3e5287ae6e6285e0cb221a3</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVpabZp74VCEfSSizeasfXhY5qmTWBDoEmgNyF7x1ula9mR7EL-fRV2k0NPOUmaeeaF0cPYRxBLAFEf31xeLFGAWqIsERBfsQVIaQqU1a_XbCFQm0IIhQfsXUp3QkAlRf2WHaCqQQKKBbO3Ic0jxb8-0Zp_Ixr5ilwMPmz4yThufa5OA_8ayaUp90Py0wO_pk1PYXKTHwJ3Yc0vXd8Pm-jG377lP336w6_bIeaQ9-xN57aJPuzPQ3b7_ezm9LxYXf24OD1ZFW0F5VR0GhS1NejKgDayaXRHlB-VI1N3ugIyEk2DoispX7QjRQqNJNE2iODKQ3a0yx3jcD9TmmzvU0vbrQs0zMmCQaWkqQy-AAUlsMZKvQAVRqEWoszol__Qu2GOIe9s80YaaqMRMiV2VBuHlCJ1doy-d_HBgrCPSm1Wah-V2r3SPPJ5Hzw3Pa2fB54cZuDTDvBE9NzOf4a6qst_A3yi4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787198721</pqid></control><display><type>article</type><title>Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring</title><source>IEEE Electronic Library (IEL)</source><creator>Kallenberg, Michiel ; Petersen, Kersten ; Nielsen, Mads ; Ng, Andrew Y. ; Pengfei Diao ; Igel, Christian ; Vachon, Celine M. ; Holland, Katharina ; Winkel, Rikke Rass ; Karssemeijer, Nico ; Lillholm, Martin</creator><creatorcontrib>Kallenberg, Michiel ; Petersen, Kersten ; Nielsen, Mads ; Ng, Andrew Y. ; Pengfei Diao ; Igel, Christian ; Vachon, Celine M. ; Holland, Katharina ; Winkel, Rikke Rass ; Karssemeijer, Nico ; Lillholm, Martin</creatorcontrib><description>Mammographic risk scoring has commonly been automated by extracting a set of handcrafted features from mammograms, and relating the responses directly or indirectly to breast cancer risk. We present a method that learns a feature hierarchy from unlabeled data. When the learned features are used as the input to a simple classifier, two different tasks can be addressed: i) breast density segmentation, and ii) scoring of mammographic texture. The proposed model learns features at multiple scales. To control the models capacity a novel sparsity regularizer is introduced that incorporates both lifetime and population sparsity. We evaluated our method on three different clinical datasets. Our state-of-the-art results show that the learned breast density scores have a very strong positive relationship with manual ones, and that the learned texture scores are predictive of breast cancer. The model is easy to apply and generalizes to many other segmentation and scoring problems.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2016.2532122</identifier><identifier>PMID: 26915120</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Aged ; Breast ; Breast - diagnostic imaging ; Breast cancer ; Breast Density - physiology ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - epidemiology ; Breasts ; Computer architecture ; deep learning ; Density ; Female ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image segmentation ; Machine learning ; mammograms ; Mammography ; Mammography - methods ; Manuals ; Mathematical models ; Middle Aged ; prognosis ; Risk ; risk factor ; Risk Factors ; Scoring ; Segmentation ; Sparsity ; Surface layer ; Texture ; unsupervised feature learning ; Unsupervised Machine Learning</subject><ispartof>IEEE transactions on medical imaging, 2016-05, Vol.35 (5), p.1322-1331</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-f716ec917481785bb7fee7484ae89f741e8528b20f3e5287ae6e6285e0cb221a3</citedby><cites>FETCH-LOGICAL-c413t-f716ec917481785bb7fee7484ae89f741e8528b20f3e5287ae6e6285e0cb221a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7412749$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7412749$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26915120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kallenberg, Michiel</creatorcontrib><creatorcontrib>Petersen, Kersten</creatorcontrib><creatorcontrib>Nielsen, Mads</creatorcontrib><creatorcontrib>Ng, Andrew Y.</creatorcontrib><creatorcontrib>Pengfei Diao</creatorcontrib><creatorcontrib>Igel, Christian</creatorcontrib><creatorcontrib>Vachon, Celine M.</creatorcontrib><creatorcontrib>Holland, Katharina</creatorcontrib><creatorcontrib>Winkel, Rikke Rass</creatorcontrib><creatorcontrib>Karssemeijer, Nico</creatorcontrib><creatorcontrib>Lillholm, Martin</creatorcontrib><title>Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Mammographic risk scoring has commonly been automated by extracting a set of handcrafted features from mammograms, and relating the responses directly or indirectly to breast cancer risk. We present a method that learns a feature hierarchy from unlabeled data. When the learned features are used as the input to a simple classifier, two different tasks can be addressed: i) breast density segmentation, and ii) scoring of mammographic texture. The proposed model learns features at multiple scales. To control the models capacity a novel sparsity regularizer is introduced that incorporates both lifetime and population sparsity. We evaluated our method on three different clinical datasets. Our state-of-the-art results show that the learned breast density scores have a very strong positive relationship with manual ones, and that the learned texture scores are predictive of breast cancer. The model is easy to apply and generalizes to many other segmentation and scoring problems.</description><subject>Adult</subject><subject>Aged</subject><subject>Breast</subject><subject>Breast - diagnostic imaging</subject><subject>Breast cancer</subject><subject>Breast Density - physiology</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - epidemiology</subject><subject>Breasts</subject><subject>Computer architecture</subject><subject>deep learning</subject><subject>Density</subject><subject>Female</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>mammograms</subject><subject>Mammography</subject><subject>Mammography - methods</subject><subject>Manuals</subject><subject>Mathematical models</subject><subject>Middle Aged</subject><subject>prognosis</subject><subject>Risk</subject><subject>risk factor</subject><subject>Risk Factors</subject><subject>Scoring</subject><subject>Segmentation</subject><subject>Sparsity</subject><subject>Surface layer</subject><subject>Texture</subject><subject>unsupervised feature learning</subject><subject>Unsupervised Machine Learning</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1r3DAQhkVpabZp74VCEfSSizeasfXhY5qmTWBDoEmgNyF7x1ula9mR7EL-fRV2k0NPOUmaeeaF0cPYRxBLAFEf31xeLFGAWqIsERBfsQVIaQqU1a_XbCFQm0IIhQfsXUp3QkAlRf2WHaCqQQKKBbO3Ic0jxb8-0Zp_Ixr5ilwMPmz4yThufa5OA_8ayaUp90Py0wO_pk1PYXKTHwJ3Yc0vXd8Pm-jG377lP336w6_bIeaQ9-xN57aJPuzPQ3b7_ezm9LxYXf24OD1ZFW0F5VR0GhS1NejKgDayaXRHlB-VI1N3ugIyEk2DoispX7QjRQqNJNE2iODKQ3a0yx3jcD9TmmzvU0vbrQs0zMmCQaWkqQy-AAUlsMZKvQAVRqEWoszol__Qu2GOIe9s80YaaqMRMiV2VBuHlCJ1doy-d_HBgrCPSm1Wah-V2r3SPPJ5Hzw3Pa2fB54cZuDTDvBE9NzOf4a6qst_A3yi4w</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Kallenberg, Michiel</creator><creator>Petersen, Kersten</creator><creator>Nielsen, Mads</creator><creator>Ng, Andrew Y.</creator><creator>Pengfei Diao</creator><creator>Igel, Christian</creator><creator>Vachon, Celine M.</creator><creator>Holland, Katharina</creator><creator>Winkel, Rikke Rass</creator><creator>Karssemeijer, Nico</creator><creator>Lillholm, Martin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201605</creationdate><title>Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring</title><author>Kallenberg, Michiel ; Petersen, Kersten ; Nielsen, Mads ; Ng, Andrew Y. ; Pengfei Diao ; Igel, Christian ; Vachon, Celine M. ; Holland, Katharina ; Winkel, Rikke Rass ; Karssemeijer, Nico ; Lillholm, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-f716ec917481785bb7fee7484ae89f741e8528b20f3e5287ae6e6285e0cb221a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Breast</topic><topic>Breast - diagnostic imaging</topic><topic>Breast cancer</topic><topic>Breast Density - physiology</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - epidemiology</topic><topic>Breasts</topic><topic>Computer architecture</topic><topic>deep learning</topic><topic>Density</topic><topic>Female</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>mammograms</topic><topic>Mammography</topic><topic>Mammography - methods</topic><topic>Manuals</topic><topic>Mathematical models</topic><topic>Middle Aged</topic><topic>prognosis</topic><topic>Risk</topic><topic>risk factor</topic><topic>Risk Factors</topic><topic>Scoring</topic><topic>Segmentation</topic><topic>Sparsity</topic><topic>Surface layer</topic><topic>Texture</topic><topic>unsupervised feature learning</topic><topic>Unsupervised Machine Learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Kallenberg, Michiel</creatorcontrib><creatorcontrib>Petersen, Kersten</creatorcontrib><creatorcontrib>Nielsen, Mads</creatorcontrib><creatorcontrib>Ng, Andrew Y.</creatorcontrib><creatorcontrib>Pengfei Diao</creatorcontrib><creatorcontrib>Igel, Christian</creatorcontrib><creatorcontrib>Vachon, Celine M.</creatorcontrib><creatorcontrib>Holland, Katharina</creatorcontrib><creatorcontrib>Winkel, Rikke Rass</creatorcontrib><creatorcontrib>Karssemeijer, Nico</creatorcontrib><creatorcontrib>Lillholm, Martin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kallenberg, Michiel</au><au>Petersen, Kersten</au><au>Nielsen, Mads</au><au>Ng, Andrew Y.</au><au>Pengfei Diao</au><au>Igel, Christian</au><au>Vachon, Celine M.</au><au>Holland, Katharina</au><au>Winkel, Rikke Rass</au><au>Karssemeijer, Nico</au><au>Lillholm, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2016-05</date><risdate>2016</risdate><volume>35</volume><issue>5</issue><spage>1322</spage><epage>1331</epage><pages>1322-1331</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Mammographic risk scoring has commonly been automated by extracting a set of handcrafted features from mammograms, and relating the responses directly or indirectly to breast cancer risk. We present a method that learns a feature hierarchy from unlabeled data. When the learned features are used as the input to a simple classifier, two different tasks can be addressed: i) breast density segmentation, and ii) scoring of mammographic texture. The proposed model learns features at multiple scales. To control the models capacity a novel sparsity regularizer is introduced that incorporates both lifetime and population sparsity. We evaluated our method on three different clinical datasets. Our state-of-the-art results show that the learned breast density scores have a very strong positive relationship with manual ones, and that the learned texture scores are predictive of breast cancer. The model is easy to apply and generalizes to many other segmentation and scoring problems.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26915120</pmid><doi>10.1109/TMI.2016.2532122</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2016-05, Vol.35 (5), p.1322-1331
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_1808627003
source IEEE Electronic Library (IEL)
subjects Adult
Aged
Breast
Breast - diagnostic imaging
Breast cancer
Breast Density - physiology
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - epidemiology
Breasts
Computer architecture
deep learning
Density
Female
Humans
Image Interpretation, Computer-Assisted - methods
Image segmentation
Machine learning
mammograms
Mammography
Mammography - methods
Manuals
Mathematical models
Middle Aged
prognosis
Risk
risk factor
Risk Factors
Scoring
Segmentation
Sparsity
Surface layer
Texture
unsupervised feature learning
Unsupervised Machine Learning
title Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Deep%20Learning%20Applied%20to%20Breast%20Density%20Segmentation%20and%20Mammographic%20Risk%20Scoring&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Kallenberg,%20Michiel&rft.date=2016-05&rft.volume=35&rft.issue=5&rft.spage=1322&rft.epage=1331&rft.pages=1322-1331&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2016.2532122&rft_dat=%3Cproquest_RIE%3E1826658482%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787198721&rft_id=info:pmid/26915120&rft_ieee_id=7412749&rfr_iscdi=true