Different STAT Transcription Complexes Drive Early and Delayed Responses to Type I IFNs
IFNs, which transduce pivotal signals through Stat1 and Stat2, effectively suppress the replication of Legionella pneumophila in primary murine macrophages. Although the ability of IFN-γ to impede L. pneumophila growth is fully dependent on Stat1, IFN-αβ unexpectedly suppresses L. pneumophila growth...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2015-07, Vol.195 (1), p.210-216 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 216 |
---|---|
container_issue | 1 |
container_start_page | 210 |
container_title | The Journal of immunology (1950) |
container_volume | 195 |
creator | Abdul-Sater, Ali A Majoros, Andrea Plumlee, Courtney R Perry, Stuart Gu, Ai Di Lee, Carolyn Shresta, Sujan Decker, Thomas Schindler, Christian |
description | IFNs, which transduce pivotal signals through Stat1 and Stat2, effectively suppress the replication of Legionella pneumophila in primary murine macrophages. Although the ability of IFN-γ to impede L. pneumophila growth is fully dependent on Stat1, IFN-αβ unexpectedly suppresses L. pneumophila growth in both Stat1- and Stat2-deficient macrophages. New studies demonstrating that the robust response to IFN-αβ is lost in Stat1-Stat2 double-knockout macrophages suggest that Stat1 and Stat2 are functionally redundant in their ability to direct an innate response toward L. pneumophila. Because the ability of IFN-αβ to signal through Stat1-dependent complexes (i.e., Stat1-Stat1 and Stat1-Stat2 dimers) has been well characterized, the current studies focus on how Stat2 is able to direct a potent response to IFN-αβ in the absence of Stat1. These studies reveal that IFN-αβ is able to drive the formation of a Stat2 and IFN regulatory factor 9 complex that drives the expression of a subset of IFN-stimulated genes, but with substantially delayed kinetics. These observations raise the possibility that this pathway evolved in response to microbes that have devised strategies to subvert Stat1-dependent responses. |
doi_str_mv | 10.4049/jimmunol.1401139 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808626061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1690208218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-9ce818e0a4ef596b2009eb6ac719fdee4afe9a4692ae35d20551b2ad795e9f73</originalsourceid><addsrcrecordid>eNqFkM9LwzAYhoMobk7vniRHL51f0jRtjrIfOhgKWvBYsvYLdLRNTVqx_72VbV49vZfnfeF9CLllMBcg1MO-rOu-sdWcCWAsVGdkyqIIAilBnpMpAOcBi2U8IVfe7wFAAheXZMIlMMVjmJKPZWkMOmw6-p4-pjR1uvG5K9uutA1d2Lqt8Bs9XbryC-lKu2qguinoEis9YEHf0Le28SPRWZoOLdIN3axf_DW5MLryeHPMGUnXq3TxHGxfnzaLx22QCwFdoHJMWIKgBZpIyR0HULiTOo-ZMgWi0AaVFlJxjWFUcIgituO6iFWEysThjNwfZltnP3v0XVaXPseq0g3a3mcsgUSObyX7H5UKOCScJSMKBzR31nuHJmtdWWs3ZAyyX_HZSXx2FD9W7o7r_a7G4q9wMh3-AMU3f-s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690208218</pqid></control><display><type>article</type><title>Different STAT Transcription Complexes Drive Early and Delayed Responses to Type I IFNs</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Abdul-Sater, Ali A ; Majoros, Andrea ; Plumlee, Courtney R ; Perry, Stuart ; Gu, Ai Di ; Lee, Carolyn ; Shresta, Sujan ; Decker, Thomas ; Schindler, Christian</creator><creatorcontrib>Abdul-Sater, Ali A ; Majoros, Andrea ; Plumlee, Courtney R ; Perry, Stuart ; Gu, Ai Di ; Lee, Carolyn ; Shresta, Sujan ; Decker, Thomas ; Schindler, Christian</creatorcontrib><description>IFNs, which transduce pivotal signals through Stat1 and Stat2, effectively suppress the replication of Legionella pneumophila in primary murine macrophages. Although the ability of IFN-γ to impede L. pneumophila growth is fully dependent on Stat1, IFN-αβ unexpectedly suppresses L. pneumophila growth in both Stat1- and Stat2-deficient macrophages. New studies demonstrating that the robust response to IFN-αβ is lost in Stat1-Stat2 double-knockout macrophages suggest that Stat1 and Stat2 are functionally redundant in their ability to direct an innate response toward L. pneumophila. Because the ability of IFN-αβ to signal through Stat1-dependent complexes (i.e., Stat1-Stat1 and Stat1-Stat2 dimers) has been well characterized, the current studies focus on how Stat2 is able to direct a potent response to IFN-αβ in the absence of Stat1. These studies reveal that IFN-αβ is able to drive the formation of a Stat2 and IFN regulatory factor 9 complex that drives the expression of a subset of IFN-stimulated genes, but with substantially delayed kinetics. These observations raise the possibility that this pathway evolved in response to microbes that have devised strategies to subvert Stat1-dependent responses.</description><identifier>ISSN: 0022-1767</identifier><identifier>EISSN: 1550-6606</identifier><identifier>DOI: 10.4049/jimmunol.1401139</identifier><identifier>PMID: 26019270</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Bone Marrow Cells - immunology ; Bone Marrow Cells - microbiology ; Bone Marrow Cells - pathology ; Gene Expression Regulation ; Host-Pathogen Interactions ; Interferon-gamma - genetics ; Interferon-gamma - immunology ; Interferon-Stimulated Gene Factor 3, gamma Subunit - genetics ; Interferon-Stimulated Gene Factor 3, gamma Subunit - immunology ; Legionella pneumophila ; Legionella pneumophila - immunology ; Legionellosis - genetics ; Legionellosis - immunology ; Legionellosis - microbiology ; Legionellosis - pathology ; Macrophages - immunology ; Macrophages - microbiology ; Macrophages - pathology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Primary Cell Culture ; Protein Multimerization ; Receptor, Interferon alpha-beta - genetics ; Receptor, Interferon alpha-beta - immunology ; Signal Transduction ; STAT1 Transcription Factor - deficiency ; STAT1 Transcription Factor - genetics ; STAT1 Transcription Factor - immunology ; STAT2 Transcription Factor - deficiency ; STAT2 Transcription Factor - genetics ; STAT2 Transcription Factor - immunology ; Time Factors</subject><ispartof>The Journal of immunology (1950), 2015-07, Vol.195 (1), p.210-216</ispartof><rights>Copyright © 2015 by The American Association of Immunologists, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-9ce818e0a4ef596b2009eb6ac719fdee4afe9a4692ae35d20551b2ad795e9f73</citedby><cites>FETCH-LOGICAL-c440t-9ce818e0a4ef596b2009eb6ac719fdee4afe9a4692ae35d20551b2ad795e9f73</cites><orcidid>0000-0003-1598-1529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26019270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdul-Sater, Ali A</creatorcontrib><creatorcontrib>Majoros, Andrea</creatorcontrib><creatorcontrib>Plumlee, Courtney R</creatorcontrib><creatorcontrib>Perry, Stuart</creatorcontrib><creatorcontrib>Gu, Ai Di</creatorcontrib><creatorcontrib>Lee, Carolyn</creatorcontrib><creatorcontrib>Shresta, Sujan</creatorcontrib><creatorcontrib>Decker, Thomas</creatorcontrib><creatorcontrib>Schindler, Christian</creatorcontrib><title>Different STAT Transcription Complexes Drive Early and Delayed Responses to Type I IFNs</title><title>The Journal of immunology (1950)</title><addtitle>J Immunol</addtitle><description>IFNs, which transduce pivotal signals through Stat1 and Stat2, effectively suppress the replication of Legionella pneumophila in primary murine macrophages. Although the ability of IFN-γ to impede L. pneumophila growth is fully dependent on Stat1, IFN-αβ unexpectedly suppresses L. pneumophila growth in both Stat1- and Stat2-deficient macrophages. New studies demonstrating that the robust response to IFN-αβ is lost in Stat1-Stat2 double-knockout macrophages suggest that Stat1 and Stat2 are functionally redundant in their ability to direct an innate response toward L. pneumophila. Because the ability of IFN-αβ to signal through Stat1-dependent complexes (i.e., Stat1-Stat1 and Stat1-Stat2 dimers) has been well characterized, the current studies focus on how Stat2 is able to direct a potent response to IFN-αβ in the absence of Stat1. These studies reveal that IFN-αβ is able to drive the formation of a Stat2 and IFN regulatory factor 9 complex that drives the expression of a subset of IFN-stimulated genes, but with substantially delayed kinetics. These observations raise the possibility that this pathway evolved in response to microbes that have devised strategies to subvert Stat1-dependent responses.</description><subject>Animals</subject><subject>Bone Marrow Cells - immunology</subject><subject>Bone Marrow Cells - microbiology</subject><subject>Bone Marrow Cells - pathology</subject><subject>Gene Expression Regulation</subject><subject>Host-Pathogen Interactions</subject><subject>Interferon-gamma - genetics</subject><subject>Interferon-gamma - immunology</subject><subject>Interferon-Stimulated Gene Factor 3, gamma Subunit - genetics</subject><subject>Interferon-Stimulated Gene Factor 3, gamma Subunit - immunology</subject><subject>Legionella pneumophila</subject><subject>Legionella pneumophila - immunology</subject><subject>Legionellosis - genetics</subject><subject>Legionellosis - immunology</subject><subject>Legionellosis - microbiology</subject><subject>Legionellosis - pathology</subject><subject>Macrophages - immunology</subject><subject>Macrophages - microbiology</subject><subject>Macrophages - pathology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Primary Cell Culture</subject><subject>Protein Multimerization</subject><subject>Receptor, Interferon alpha-beta - genetics</subject><subject>Receptor, Interferon alpha-beta - immunology</subject><subject>Signal Transduction</subject><subject>STAT1 Transcription Factor - deficiency</subject><subject>STAT1 Transcription Factor - genetics</subject><subject>STAT1 Transcription Factor - immunology</subject><subject>STAT2 Transcription Factor - deficiency</subject><subject>STAT2 Transcription Factor - genetics</subject><subject>STAT2 Transcription Factor - immunology</subject><subject>Time Factors</subject><issn>0022-1767</issn><issn>1550-6606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM9LwzAYhoMobk7vniRHL51f0jRtjrIfOhgKWvBYsvYLdLRNTVqx_72VbV49vZfnfeF9CLllMBcg1MO-rOu-sdWcCWAsVGdkyqIIAilBnpMpAOcBi2U8IVfe7wFAAheXZMIlMMVjmJKPZWkMOmw6-p4-pjR1uvG5K9uutA1d2Lqt8Bs9XbryC-lKu2qguinoEis9YEHf0Le28SPRWZoOLdIN3axf_DW5MLryeHPMGUnXq3TxHGxfnzaLx22QCwFdoHJMWIKgBZpIyR0HULiTOo-ZMgWi0AaVFlJxjWFUcIgituO6iFWEysThjNwfZltnP3v0XVaXPseq0g3a3mcsgUSObyX7H5UKOCScJSMKBzR31nuHJmtdWWs3ZAyyX_HZSXx2FD9W7o7r_a7G4q9wMh3-AMU3f-s</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Abdul-Sater, Ali A</creator><creator>Majoros, Andrea</creator><creator>Plumlee, Courtney R</creator><creator>Perry, Stuart</creator><creator>Gu, Ai Di</creator><creator>Lee, Carolyn</creator><creator>Shresta, Sujan</creator><creator>Decker, Thomas</creator><creator>Schindler, Christian</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7T5</scope><scope>H94</scope><orcidid>https://orcid.org/0000-0003-1598-1529</orcidid></search><sort><creationdate>20150701</creationdate><title>Different STAT Transcription Complexes Drive Early and Delayed Responses to Type I IFNs</title><author>Abdul-Sater, Ali A ; Majoros, Andrea ; Plumlee, Courtney R ; Perry, Stuart ; Gu, Ai Di ; Lee, Carolyn ; Shresta, Sujan ; Decker, Thomas ; Schindler, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-9ce818e0a4ef596b2009eb6ac719fdee4afe9a4692ae35d20551b2ad795e9f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Bone Marrow Cells - immunology</topic><topic>Bone Marrow Cells - microbiology</topic><topic>Bone Marrow Cells - pathology</topic><topic>Gene Expression Regulation</topic><topic>Host-Pathogen Interactions</topic><topic>Interferon-gamma - genetics</topic><topic>Interferon-gamma - immunology</topic><topic>Interferon-Stimulated Gene Factor 3, gamma Subunit - genetics</topic><topic>Interferon-Stimulated Gene Factor 3, gamma Subunit - immunology</topic><topic>Legionella pneumophila</topic><topic>Legionella pneumophila - immunology</topic><topic>Legionellosis - genetics</topic><topic>Legionellosis - immunology</topic><topic>Legionellosis - microbiology</topic><topic>Legionellosis - pathology</topic><topic>Macrophages - immunology</topic><topic>Macrophages - microbiology</topic><topic>Macrophages - pathology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Primary Cell Culture</topic><topic>Protein Multimerization</topic><topic>Receptor, Interferon alpha-beta - genetics</topic><topic>Receptor, Interferon alpha-beta - immunology</topic><topic>Signal Transduction</topic><topic>STAT1 Transcription Factor - deficiency</topic><topic>STAT1 Transcription Factor - genetics</topic><topic>STAT1 Transcription Factor - immunology</topic><topic>STAT2 Transcription Factor - deficiency</topic><topic>STAT2 Transcription Factor - genetics</topic><topic>STAT2 Transcription Factor - immunology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdul-Sater, Ali A</creatorcontrib><creatorcontrib>Majoros, Andrea</creatorcontrib><creatorcontrib>Plumlee, Courtney R</creatorcontrib><creatorcontrib>Perry, Stuart</creatorcontrib><creatorcontrib>Gu, Ai Di</creatorcontrib><creatorcontrib>Lee, Carolyn</creatorcontrib><creatorcontrib>Shresta, Sujan</creatorcontrib><creatorcontrib>Decker, Thomas</creatorcontrib><creatorcontrib>Schindler, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>The Journal of immunology (1950)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdul-Sater, Ali A</au><au>Majoros, Andrea</au><au>Plumlee, Courtney R</au><au>Perry, Stuart</au><au>Gu, Ai Di</au><au>Lee, Carolyn</au><au>Shresta, Sujan</au><au>Decker, Thomas</au><au>Schindler, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different STAT Transcription Complexes Drive Early and Delayed Responses to Type I IFNs</atitle><jtitle>The Journal of immunology (1950)</jtitle><addtitle>J Immunol</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>195</volume><issue>1</issue><spage>210</spage><epage>216</epage><pages>210-216</pages><issn>0022-1767</issn><eissn>1550-6606</eissn><abstract>IFNs, which transduce pivotal signals through Stat1 and Stat2, effectively suppress the replication of Legionella pneumophila in primary murine macrophages. Although the ability of IFN-γ to impede L. pneumophila growth is fully dependent on Stat1, IFN-αβ unexpectedly suppresses L. pneumophila growth in both Stat1- and Stat2-deficient macrophages. New studies demonstrating that the robust response to IFN-αβ is lost in Stat1-Stat2 double-knockout macrophages suggest that Stat1 and Stat2 are functionally redundant in their ability to direct an innate response toward L. pneumophila. Because the ability of IFN-αβ to signal through Stat1-dependent complexes (i.e., Stat1-Stat1 and Stat1-Stat2 dimers) has been well characterized, the current studies focus on how Stat2 is able to direct a potent response to IFN-αβ in the absence of Stat1. These studies reveal that IFN-αβ is able to drive the formation of a Stat2 and IFN regulatory factor 9 complex that drives the expression of a subset of IFN-stimulated genes, but with substantially delayed kinetics. These observations raise the possibility that this pathway evolved in response to microbes that have devised strategies to subvert Stat1-dependent responses.</abstract><cop>United States</cop><pmid>26019270</pmid><doi>10.4049/jimmunol.1401139</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1598-1529</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1767 |
ispartof | The Journal of immunology (1950), 2015-07, Vol.195 (1), p.210-216 |
issn | 0022-1767 1550-6606 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808626061 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Animals Bone Marrow Cells - immunology Bone Marrow Cells - microbiology Bone Marrow Cells - pathology Gene Expression Regulation Host-Pathogen Interactions Interferon-gamma - genetics Interferon-gamma - immunology Interferon-Stimulated Gene Factor 3, gamma Subunit - genetics Interferon-Stimulated Gene Factor 3, gamma Subunit - immunology Legionella pneumophila Legionella pneumophila - immunology Legionellosis - genetics Legionellosis - immunology Legionellosis - microbiology Legionellosis - pathology Macrophages - immunology Macrophages - microbiology Macrophages - pathology Mice Mice, Inbred C57BL Mice, Knockout Primary Cell Culture Protein Multimerization Receptor, Interferon alpha-beta - genetics Receptor, Interferon alpha-beta - immunology Signal Transduction STAT1 Transcription Factor - deficiency STAT1 Transcription Factor - genetics STAT1 Transcription Factor - immunology STAT2 Transcription Factor - deficiency STAT2 Transcription Factor - genetics STAT2 Transcription Factor - immunology Time Factors |
title | Different STAT Transcription Complexes Drive Early and Delayed Responses to Type I IFNs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20STAT%20Transcription%20Complexes%20Drive%20Early%20and%20Delayed%20Responses%20to%20Type%20I%20IFNs&rft.jtitle=The%20Journal%20of%20immunology%20(1950)&rft.au=Abdul-Sater,%20Ali%20A&rft.date=2015-07-01&rft.volume=195&rft.issue=1&rft.spage=210&rft.epage=216&rft.pages=210-216&rft.issn=0022-1767&rft.eissn=1550-6606&rft_id=info:doi/10.4049/jimmunol.1401139&rft_dat=%3Cproquest_cross%3E1690208218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1690208218&rft_id=info:pmid/26019270&rfr_iscdi=true |