Insights into the mechanism of enzymatic hydrolysis of xylan

Hemicelluloses are a vast group of complex, non-cellulosic heteropolysaccharides that are classified according to the principal monosaccharides present in its structure. Xylan is the most abundant hemicellulose found in lignocellulosic biomass. In the current trend of a more effective utilization of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2016-06, Vol.100 (12), p.5205-5214
Hauptverfasser: Moreira, L. R. S., Filho, E. X. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5214
container_issue 12
container_start_page 5205
container_title Applied microbiology and biotechnology
container_volume 100
creator Moreira, L. R. S.
Filho, E. X. F.
description Hemicelluloses are a vast group of complex, non-cellulosic heteropolysaccharides that are classified according to the principal monosaccharides present in its structure. Xylan is the most abundant hemicellulose found in lignocellulosic biomass. In the current trend of a more effective utilization of lignocellulosic biomass and developments of environmentally friendly industrial processes, increasing research activities have been directed to a practical application of the xylan component of plants and plant residues as biopolymer resources. A variety of enzymes, including main- and side-chain acting enzymes, are responsible for xylan breakdown. Xylanase is a main-chain enzyme that randomly cleaves the β-1,4 linkages between the xylopyranosyl residues in xylan backbone. This enzyme presents varying folds, mechanisms of action, substrate specificities, hydrolytic activities, and physicochemical characteristics. This review pays particular attention to different aspects of the mechanisms of action of xylan-degrading enzymes and their contribution to improve the production of bioproducts from plant biomass. Furthermore, the influence of phenolic compounds on xylanase activity is also discussed.
doi_str_mv 10.1007/s00253-016-7555-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808620207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A452925861</galeid><sourcerecordid>A452925861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-fda9e86be99f4ebf29eebb067539d1c4c3d69acecccfdc7f1512af70bec978a23</originalsourceid><addsrcrecordid>eNqFkl1rFDEUhoModlv9Ad7IgDf2YmqSmSQT8KYUPxYKgh_XIZM52U2ZSWqSgc7-erNuLa4okovAOc_7ck7yIvSC4AuCsXiTMKasqTHhtWCM1btHaEXahtaYk_YxWmEiWOnI7gSdpnSDMaEd50_RCRWE0KaVK_R27ZPbbHOqnM-hyluoJjBb7V2aqmAr8Ltl0tmZarsMMYxLcmlfv1tG7Z-hJ1aPCZ7f32fo2_t3X68-1tefPqyvLq9rw9om13bQEjreg5S2hd5SCdD3mAvWyIGY1jQDl9qAMcYORljCCNVW4B6MFJ2mzRl6ffC9jeH7DCmrySUDYxkBwpwU6XDHKaZY_B8VEsvyaFwW9NUf6E2Yoy-L_KRoQ5oy_gO10SMo523IUZu9qbpsGS1eHSeFuvgLVc4AkzPBg3WlfiQ4PxIUJsNd3ug5JbX-8vmYJQfWxJBSBKtuo5t0XBTBah8EdQiCKkFQ-yCoXdG8vF9u7icYHhS_fr4A9ACk0vIbiL9t_0_XH-KYu_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790231354</pqid></control><display><type>article</type><title>Insights into the mechanism of enzymatic hydrolysis of xylan</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Moreira, L. R. S. ; Filho, E. X. F.</creator><creatorcontrib>Moreira, L. R. S. ; Filho, E. X. F.</creatorcontrib><description>Hemicelluloses are a vast group of complex, non-cellulosic heteropolysaccharides that are classified according to the principal monosaccharides present in its structure. Xylan is the most abundant hemicellulose found in lignocellulosic biomass. In the current trend of a more effective utilization of lignocellulosic biomass and developments of environmentally friendly industrial processes, increasing research activities have been directed to a practical application of the xylan component of plants and plant residues as biopolymer resources. A variety of enzymes, including main- and side-chain acting enzymes, are responsible for xylan breakdown. Xylanase is a main-chain enzyme that randomly cleaves the β-1,4 linkages between the xylopyranosyl residues in xylan backbone. This enzyme presents varying folds, mechanisms of action, substrate specificities, hydrolytic activities, and physicochemical characteristics. This review pays particular attention to different aspects of the mechanisms of action of xylan-degrading enzymes and their contribution to improve the production of bioproducts from plant biomass. Furthermore, the influence of phenolic compounds on xylanase activity is also discussed.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-016-7555-z</identifier><identifier>PMID: 27112349</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acids ; Biochemistry ; Biomass ; Biomedical and Life Sciences ; Biopolymers ; Biotechnology ; Cellulose ; Cellulose - metabolism ; Chemical bonds ; Chemical properties ; Chemical research ; Endo-1,4-beta Xylanases - chemistry ; Endo-1,4-beta Xylanases - metabolism ; Enzymes ; Fungi ; Glycoside Hydrolases - chemistry ; Glycoside Hydrolases - metabolism ; Hydrolysis ; Life Sciences ; Lignin ; Lignocellulose ; Microbial Genetics and Genomics ; Microbiology ; Mini-Review ; Phenols ; Plant biomass ; Plants - chemistry ; Polysaccharides - metabolism ; Studies ; Substrate Specificity ; Xylans ; Xylans - metabolism ; Xylosidases - chemistry ; Xylosidases - metabolism</subject><ispartof>Applied microbiology and biotechnology, 2016-06, Vol.100 (12), p.5205-5214</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-fda9e86be99f4ebf29eebb067539d1c4c3d69acecccfdc7f1512af70bec978a23</citedby><cites>FETCH-LOGICAL-c543t-fda9e86be99f4ebf29eebb067539d1c4c3d69acecccfdc7f1512af70bec978a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-016-7555-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-016-7555-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27112349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moreira, L. R. S.</creatorcontrib><creatorcontrib>Filho, E. X. F.</creatorcontrib><title>Insights into the mechanism of enzymatic hydrolysis of xylan</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Hemicelluloses are a vast group of complex, non-cellulosic heteropolysaccharides that are classified according to the principal monosaccharides present in its structure. Xylan is the most abundant hemicellulose found in lignocellulosic biomass. In the current trend of a more effective utilization of lignocellulosic biomass and developments of environmentally friendly industrial processes, increasing research activities have been directed to a practical application of the xylan component of plants and plant residues as biopolymer resources. A variety of enzymes, including main- and side-chain acting enzymes, are responsible for xylan breakdown. Xylanase is a main-chain enzyme that randomly cleaves the β-1,4 linkages between the xylopyranosyl residues in xylan backbone. This enzyme presents varying folds, mechanisms of action, substrate specificities, hydrolytic activities, and physicochemical characteristics. This review pays particular attention to different aspects of the mechanisms of action of xylan-degrading enzymes and their contribution to improve the production of bioproducts from plant biomass. Furthermore, the influence of phenolic compounds on xylanase activity is also discussed.</description><subject>Acids</subject><subject>Biochemistry</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biopolymers</subject><subject>Biotechnology</subject><subject>Cellulose</subject><subject>Cellulose - metabolism</subject><subject>Chemical bonds</subject><subject>Chemical properties</subject><subject>Chemical research</subject><subject>Endo-1,4-beta Xylanases - chemistry</subject><subject>Endo-1,4-beta Xylanases - metabolism</subject><subject>Enzymes</subject><subject>Fungi</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Hydrolysis</subject><subject>Life Sciences</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mini-Review</subject><subject>Phenols</subject><subject>Plant biomass</subject><subject>Plants - chemistry</subject><subject>Polysaccharides - metabolism</subject><subject>Studies</subject><subject>Substrate Specificity</subject><subject>Xylans</subject><subject>Xylans - metabolism</subject><subject>Xylosidases - chemistry</subject><subject>Xylosidases - metabolism</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkl1rFDEUhoModlv9Ad7IgDf2YmqSmSQT8KYUPxYKgh_XIZM52U2ZSWqSgc7-erNuLa4okovAOc_7ck7yIvSC4AuCsXiTMKasqTHhtWCM1btHaEXahtaYk_YxWmEiWOnI7gSdpnSDMaEd50_RCRWE0KaVK_R27ZPbbHOqnM-hyluoJjBb7V2aqmAr8Ltl0tmZarsMMYxLcmlfv1tG7Z-hJ1aPCZ7f32fo2_t3X68-1tefPqyvLq9rw9om13bQEjreg5S2hd5SCdD3mAvWyIGY1jQDl9qAMcYORljCCNVW4B6MFJ2mzRl6ffC9jeH7DCmrySUDYxkBwpwU6XDHKaZY_B8VEsvyaFwW9NUf6E2Yoy-L_KRoQ5oy_gO10SMo523IUZu9qbpsGS1eHSeFuvgLVc4AkzPBg3WlfiQ4PxIUJsNd3ug5JbX-8vmYJQfWxJBSBKtuo5t0XBTBah8EdQiCKkFQ-yCoXdG8vF9u7icYHhS_fr4A9ACk0vIbiL9t_0_XH-KYu_M</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Moreira, L. R. S.</creator><creator>Filho, E. X. F.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20160601</creationdate><title>Insights into the mechanism of enzymatic hydrolysis of xylan</title><author>Moreira, L. R. S. ; Filho, E. X. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-fda9e86be99f4ebf29eebb067539d1c4c3d69acecccfdc7f1512af70bec978a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acids</topic><topic>Biochemistry</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biopolymers</topic><topic>Biotechnology</topic><topic>Cellulose</topic><topic>Cellulose - metabolism</topic><topic>Chemical bonds</topic><topic>Chemical properties</topic><topic>Chemical research</topic><topic>Endo-1,4-beta Xylanases - chemistry</topic><topic>Endo-1,4-beta Xylanases - metabolism</topic><topic>Enzymes</topic><topic>Fungi</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Hydrolysis</topic><topic>Life Sciences</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mini-Review</topic><topic>Phenols</topic><topic>Plant biomass</topic><topic>Plants - chemistry</topic><topic>Polysaccharides - metabolism</topic><topic>Studies</topic><topic>Substrate Specificity</topic><topic>Xylans</topic><topic>Xylans - metabolism</topic><topic>Xylosidases - chemistry</topic><topic>Xylosidases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreira, L. R. S.</creatorcontrib><creatorcontrib>Filho, E. X. F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreira, L. R. S.</au><au>Filho, E. X. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the mechanism of enzymatic hydrolysis of xylan</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>100</volume><issue>12</issue><spage>5205</spage><epage>5214</epage><pages>5205-5214</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Hemicelluloses are a vast group of complex, non-cellulosic heteropolysaccharides that are classified according to the principal monosaccharides present in its structure. Xylan is the most abundant hemicellulose found in lignocellulosic biomass. In the current trend of a more effective utilization of lignocellulosic biomass and developments of environmentally friendly industrial processes, increasing research activities have been directed to a practical application of the xylan component of plants and plant residues as biopolymer resources. A variety of enzymes, including main- and side-chain acting enzymes, are responsible for xylan breakdown. Xylanase is a main-chain enzyme that randomly cleaves the β-1,4 linkages between the xylopyranosyl residues in xylan backbone. This enzyme presents varying folds, mechanisms of action, substrate specificities, hydrolytic activities, and physicochemical characteristics. This review pays particular attention to different aspects of the mechanisms of action of xylan-degrading enzymes and their contribution to improve the production of bioproducts from plant biomass. Furthermore, the influence of phenolic compounds on xylanase activity is also discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27112349</pmid><doi>10.1007/s00253-016-7555-z</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2016-06, Vol.100 (12), p.5205-5214
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1808620207
source MEDLINE; SpringerNature Journals
subjects Acids
Biochemistry
Biomass
Biomedical and Life Sciences
Biopolymers
Biotechnology
Cellulose
Cellulose - metabolism
Chemical bonds
Chemical properties
Chemical research
Endo-1,4-beta Xylanases - chemistry
Endo-1,4-beta Xylanases - metabolism
Enzymes
Fungi
Glycoside Hydrolases - chemistry
Glycoside Hydrolases - metabolism
Hydrolysis
Life Sciences
Lignin
Lignocellulose
Microbial Genetics and Genomics
Microbiology
Mini-Review
Phenols
Plant biomass
Plants - chemistry
Polysaccharides - metabolism
Studies
Substrate Specificity
Xylans
Xylans - metabolism
Xylosidases - chemistry
Xylosidases - metabolism
title Insights into the mechanism of enzymatic hydrolysis of xylan
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20mechanism%20of%20enzymatic%20hydrolysis%20of%20xylan&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Moreira,%20L.%20R.%20S.&rft.date=2016-06-01&rft.volume=100&rft.issue=12&rft.spage=5205&rft.epage=5214&rft.pages=5205-5214&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-016-7555-z&rft_dat=%3Cgale_proqu%3EA452925861%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790231354&rft_id=info:pmid/27112349&rft_galeid=A452925861&rfr_iscdi=true