Insights into the mechanism of enzymatic hydrolysis of xylan
Hemicelluloses are a vast group of complex, non-cellulosic heteropolysaccharides that are classified according to the principal monosaccharides present in its structure. Xylan is the most abundant hemicellulose found in lignocellulosic biomass. In the current trend of a more effective utilization of...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2016-06, Vol.100 (12), p.5205-5214 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5214 |
---|---|
container_issue | 12 |
container_start_page | 5205 |
container_title | Applied microbiology and biotechnology |
container_volume | 100 |
creator | Moreira, L. R. S. Filho, E. X. F. |
description | Hemicelluloses are a vast group of complex, non-cellulosic heteropolysaccharides that are classified according to the principal monosaccharides present in its structure. Xylan is the most abundant hemicellulose found in lignocellulosic biomass. In the current trend of a more effective utilization of lignocellulosic biomass and developments of environmentally friendly industrial processes, increasing research activities have been directed to a practical application of the xylan component of plants and plant residues as biopolymer resources. A variety of enzymes, including main- and side-chain acting enzymes, are responsible for xylan breakdown. Xylanase is a main-chain enzyme that randomly cleaves the β-1,4 linkages between the xylopyranosyl residues in xylan backbone. This enzyme presents varying folds, mechanisms of action, substrate specificities, hydrolytic activities, and physicochemical characteristics. This review pays particular attention to different aspects of the mechanisms of action of xylan-degrading enzymes and their contribution to improve the production of bioproducts from plant biomass. Furthermore, the influence of phenolic compounds on xylanase activity is also discussed. |
doi_str_mv | 10.1007/s00253-016-7555-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808620207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A452925861</galeid><sourcerecordid>A452925861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-fda9e86be99f4ebf29eebb067539d1c4c3d69acecccfdc7f1512af70bec978a23</originalsourceid><addsrcrecordid>eNqFkl1rFDEUhoModlv9Ad7IgDf2YmqSmSQT8KYUPxYKgh_XIZM52U2ZSWqSgc7-erNuLa4okovAOc_7ck7yIvSC4AuCsXiTMKasqTHhtWCM1btHaEXahtaYk_YxWmEiWOnI7gSdpnSDMaEd50_RCRWE0KaVK_R27ZPbbHOqnM-hyluoJjBb7V2aqmAr8Ltl0tmZarsMMYxLcmlfv1tG7Z-hJ1aPCZ7f32fo2_t3X68-1tefPqyvLq9rw9om13bQEjreg5S2hd5SCdD3mAvWyIGY1jQDl9qAMcYORljCCNVW4B6MFJ2mzRl6ffC9jeH7DCmrySUDYxkBwpwU6XDHKaZY_B8VEsvyaFwW9NUf6E2Yoy-L_KRoQ5oy_gO10SMo523IUZu9qbpsGS1eHSeFuvgLVc4AkzPBg3WlfiQ4PxIUJsNd3ug5JbX-8vmYJQfWxJBSBKtuo5t0XBTBah8EdQiCKkFQ-yCoXdG8vF9u7icYHhS_fr4A9ACk0vIbiL9t_0_XH-KYu_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790231354</pqid></control><display><type>article</type><title>Insights into the mechanism of enzymatic hydrolysis of xylan</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Moreira, L. R. S. ; Filho, E. X. F.</creator><creatorcontrib>Moreira, L. R. S. ; Filho, E. X. F.</creatorcontrib><description>Hemicelluloses are a vast group of complex, non-cellulosic heteropolysaccharides that are classified according to the principal monosaccharides present in its structure. Xylan is the most abundant hemicellulose found in lignocellulosic biomass. In the current trend of a more effective utilization of lignocellulosic biomass and developments of environmentally friendly industrial processes, increasing research activities have been directed to a practical application of the xylan component of plants and plant residues as biopolymer resources. A variety of enzymes, including main- and side-chain acting enzymes, are responsible for xylan breakdown. Xylanase is a main-chain enzyme that randomly cleaves the β-1,4 linkages between the xylopyranosyl residues in xylan backbone. This enzyme presents varying folds, mechanisms of action, substrate specificities, hydrolytic activities, and physicochemical characteristics. This review pays particular attention to different aspects of the mechanisms of action of xylan-degrading enzymes and their contribution to improve the production of bioproducts from plant biomass. Furthermore, the influence of phenolic compounds on xylanase activity is also discussed.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-016-7555-z</identifier><identifier>PMID: 27112349</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acids ; Biochemistry ; Biomass ; Biomedical and Life Sciences ; Biopolymers ; Biotechnology ; Cellulose ; Cellulose - metabolism ; Chemical bonds ; Chemical properties ; Chemical research ; Endo-1,4-beta Xylanases - chemistry ; Endo-1,4-beta Xylanases - metabolism ; Enzymes ; Fungi ; Glycoside Hydrolases - chemistry ; Glycoside Hydrolases - metabolism ; Hydrolysis ; Life Sciences ; Lignin ; Lignocellulose ; Microbial Genetics and Genomics ; Microbiology ; Mini-Review ; Phenols ; Plant biomass ; Plants - chemistry ; Polysaccharides - metabolism ; Studies ; Substrate Specificity ; Xylans ; Xylans - metabolism ; Xylosidases - chemistry ; Xylosidases - metabolism</subject><ispartof>Applied microbiology and biotechnology, 2016-06, Vol.100 (12), p.5205-5214</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-fda9e86be99f4ebf29eebb067539d1c4c3d69acecccfdc7f1512af70bec978a23</citedby><cites>FETCH-LOGICAL-c543t-fda9e86be99f4ebf29eebb067539d1c4c3d69acecccfdc7f1512af70bec978a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-016-7555-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-016-7555-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27112349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moreira, L. R. S.</creatorcontrib><creatorcontrib>Filho, E. X. F.</creatorcontrib><title>Insights into the mechanism of enzymatic hydrolysis of xylan</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Hemicelluloses are a vast group of complex, non-cellulosic heteropolysaccharides that are classified according to the principal monosaccharides present in its structure. Xylan is the most abundant hemicellulose found in lignocellulosic biomass. In the current trend of a more effective utilization of lignocellulosic biomass and developments of environmentally friendly industrial processes, increasing research activities have been directed to a practical application of the xylan component of plants and plant residues as biopolymer resources. A variety of enzymes, including main- and side-chain acting enzymes, are responsible for xylan breakdown. Xylanase is a main-chain enzyme that randomly cleaves the β-1,4 linkages between the xylopyranosyl residues in xylan backbone. This enzyme presents varying folds, mechanisms of action, substrate specificities, hydrolytic activities, and physicochemical characteristics. This review pays particular attention to different aspects of the mechanisms of action of xylan-degrading enzymes and their contribution to improve the production of bioproducts from plant biomass. Furthermore, the influence of phenolic compounds on xylanase activity is also discussed.</description><subject>Acids</subject><subject>Biochemistry</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biopolymers</subject><subject>Biotechnology</subject><subject>Cellulose</subject><subject>Cellulose - metabolism</subject><subject>Chemical bonds</subject><subject>Chemical properties</subject><subject>Chemical research</subject><subject>Endo-1,4-beta Xylanases - chemistry</subject><subject>Endo-1,4-beta Xylanases - metabolism</subject><subject>Enzymes</subject><subject>Fungi</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Hydrolysis</subject><subject>Life Sciences</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mini-Review</subject><subject>Phenols</subject><subject>Plant biomass</subject><subject>Plants - chemistry</subject><subject>Polysaccharides - metabolism</subject><subject>Studies</subject><subject>Substrate Specificity</subject><subject>Xylans</subject><subject>Xylans - metabolism</subject><subject>Xylosidases - chemistry</subject><subject>Xylosidases - metabolism</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkl1rFDEUhoModlv9Ad7IgDf2YmqSmSQT8KYUPxYKgh_XIZM52U2ZSWqSgc7-erNuLa4okovAOc_7ck7yIvSC4AuCsXiTMKasqTHhtWCM1btHaEXahtaYk_YxWmEiWOnI7gSdpnSDMaEd50_RCRWE0KaVK_R27ZPbbHOqnM-hyluoJjBb7V2aqmAr8Ltl0tmZarsMMYxLcmlfv1tG7Z-hJ1aPCZ7f32fo2_t3X68-1tefPqyvLq9rw9om13bQEjreg5S2hd5SCdD3mAvWyIGY1jQDl9qAMcYORljCCNVW4B6MFJ2mzRl6ffC9jeH7DCmrySUDYxkBwpwU6XDHKaZY_B8VEsvyaFwW9NUf6E2Yoy-L_KRoQ5oy_gO10SMo523IUZu9qbpsGS1eHSeFuvgLVc4AkzPBg3WlfiQ4PxIUJsNd3ug5JbX-8vmYJQfWxJBSBKtuo5t0XBTBah8EdQiCKkFQ-yCoXdG8vF9u7icYHhS_fr4A9ACk0vIbiL9t_0_XH-KYu_M</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Moreira, L. R. S.</creator><creator>Filho, E. X. F.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20160601</creationdate><title>Insights into the mechanism of enzymatic hydrolysis of xylan</title><author>Moreira, L. R. S. ; Filho, E. X. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-fda9e86be99f4ebf29eebb067539d1c4c3d69acecccfdc7f1512af70bec978a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acids</topic><topic>Biochemistry</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biopolymers</topic><topic>Biotechnology</topic><topic>Cellulose</topic><topic>Cellulose - metabolism</topic><topic>Chemical bonds</topic><topic>Chemical properties</topic><topic>Chemical research</topic><topic>Endo-1,4-beta Xylanases - chemistry</topic><topic>Endo-1,4-beta Xylanases - metabolism</topic><topic>Enzymes</topic><topic>Fungi</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Hydrolysis</topic><topic>Life Sciences</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mini-Review</topic><topic>Phenols</topic><topic>Plant biomass</topic><topic>Plants - chemistry</topic><topic>Polysaccharides - metabolism</topic><topic>Studies</topic><topic>Substrate Specificity</topic><topic>Xylans</topic><topic>Xylans - metabolism</topic><topic>Xylosidases - chemistry</topic><topic>Xylosidases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreira, L. R. S.</creatorcontrib><creatorcontrib>Filho, E. X. F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreira, L. R. S.</au><au>Filho, E. X. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the mechanism of enzymatic hydrolysis of xylan</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>100</volume><issue>12</issue><spage>5205</spage><epage>5214</epage><pages>5205-5214</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Hemicelluloses are a vast group of complex, non-cellulosic heteropolysaccharides that are classified according to the principal monosaccharides present in its structure. Xylan is the most abundant hemicellulose found in lignocellulosic biomass. In the current trend of a more effective utilization of lignocellulosic biomass and developments of environmentally friendly industrial processes, increasing research activities have been directed to a practical application of the xylan component of plants and plant residues as biopolymer resources. A variety of enzymes, including main- and side-chain acting enzymes, are responsible for xylan breakdown. Xylanase is a main-chain enzyme that randomly cleaves the β-1,4 linkages between the xylopyranosyl residues in xylan backbone. This enzyme presents varying folds, mechanisms of action, substrate specificities, hydrolytic activities, and physicochemical characteristics. This review pays particular attention to different aspects of the mechanisms of action of xylan-degrading enzymes and their contribution to improve the production of bioproducts from plant biomass. Furthermore, the influence of phenolic compounds on xylanase activity is also discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27112349</pmid><doi>10.1007/s00253-016-7555-z</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2016-06, Vol.100 (12), p.5205-5214 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808620207 |
source | MEDLINE; SpringerNature Journals |
subjects | Acids Biochemistry Biomass Biomedical and Life Sciences Biopolymers Biotechnology Cellulose Cellulose - metabolism Chemical bonds Chemical properties Chemical research Endo-1,4-beta Xylanases - chemistry Endo-1,4-beta Xylanases - metabolism Enzymes Fungi Glycoside Hydrolases - chemistry Glycoside Hydrolases - metabolism Hydrolysis Life Sciences Lignin Lignocellulose Microbial Genetics and Genomics Microbiology Mini-Review Phenols Plant biomass Plants - chemistry Polysaccharides - metabolism Studies Substrate Specificity Xylans Xylans - metabolism Xylosidases - chemistry Xylosidases - metabolism |
title | Insights into the mechanism of enzymatic hydrolysis of xylan |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20mechanism%20of%20enzymatic%20hydrolysis%20of%20xylan&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Moreira,%20L.%20R.%20S.&rft.date=2016-06-01&rft.volume=100&rft.issue=12&rft.spage=5205&rft.epage=5214&rft.pages=5205-5214&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-016-7555-z&rft_dat=%3Cgale_proqu%3EA452925861%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790231354&rft_id=info:pmid/27112349&rft_galeid=A452925861&rfr_iscdi=true |