Marine omega-3 fatty acids prevent myocardial insulin resistance and metabolic remodeling as induced experimentally by high insulin exposure
Insulin resistance is an important risk factor for the development of several cardiac pathologies, thus advocating strategies for restoring insulin sensitivity of the heart in these conditions. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), mainly eicosapentaenoic acid (EPA, C20:5n-3) and docosahe...
Gespeichert in:
Veröffentlicht in: | American Journal of Physiology: Cell Physiology 2015-02, Vol.308 (4), p.C297-C307 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | C307 |
---|---|
container_issue | 4 |
container_start_page | C297 |
container_title | American Journal of Physiology: Cell Physiology |
container_volume | 308 |
creator | Franekova, Veronika Angin, Yeliz Hoebers, Nicole T H Coumans, Will A Simons, Peter J Glatz, Jan F C Luiken, Joost J F P Larsen, Terje S |
description | Insulin resistance is an important risk factor for the development of several cardiac pathologies, thus advocating strategies for restoring insulin sensitivity of the heart in these conditions. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), mainly eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3), have been shown to improve insulin sensitivity in insulin-sensitive tissues, but their direct effect on insulin signaling and metabolic parameters in the myocardium has not been reported previously. The aim of this study was therefore to examine the ability of EPA and DHA to prevent insulin resistance in isolated rat cardiomyocytes. Primary rat cardiomyocytes were made insulin resistant by 48 h incubation in high insulin (HI) medium. Parallel incubations were supplemented by 200 μM EPA or DHA. Addition of EPA or DHA to the medium prevented the induction of insulin resistance in cardiomyocytes by preserving the phosphorylation state of key proteins in the insulin signaling cascade and by preventing persistent relocation of fatty acid transporter CD36 to the sarcolemma. Only cardiomyocytes incubated in the presence of EPA, however, exhibited improvements in glucose and fatty acid uptake and cell shortening. We conclude that ω-3 PUFAs protect metabolic and functional properties of cardiomyocytes subjected to insulin resistance-evoking conditions. |
doi_str_mv | 10.1152/ajpcell.00073.2014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808617389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808617389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-ee6d329270e0c143eadffdd125ad5310241ec4fd506bc06fb8de9ef2262aea3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhBTggS1y4ZLHHsZMcUVUoUhEHuEcTe7L1KomDnaDmHXhovHTpgQunOfzf_NLMx9hrKfZSaniPx9nSMOyFEJXag5DlE7bLARRSG_WU7YQyqjCyVBfsRUrHzJVgmufsAnRZQWPEjv36gtFPxMNIBywU73FZNo7Wu8TnSD9pWvi4BYvReRy4n9I6-IlHSj4tOFniODk-0oJdGLzNwRgcZeTAMWXcrZYcp_uZoh9zGQ7DxruN3_nD3WNbjkNaI71kz3ocEr06z0v27eP196ub4vbrp89XH24LW1b1UhAZp6CBSpCw-TpC1_fOSdDotJICSkm27J0WprPC9F3tqKEewAASqkv27qF1juHHSmlpR59Oj8SJwppaWYvayErVzf9Ro3UFoKHO6Nt_0GNY45TPOFFGKVVrmSl4oGwMKUXq2zn_BePWStGepLZnqe0fqe1Jal56c65eu5Hc48pfi-o3kFCh-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656333851</pqid></control><display><type>article</type><title>Marine omega-3 fatty acids prevent myocardial insulin resistance and metabolic remodeling as induced experimentally by high insulin exposure</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Franekova, Veronika ; Angin, Yeliz ; Hoebers, Nicole T H ; Coumans, Will A ; Simons, Peter J ; Glatz, Jan F C ; Luiken, Joost J F P ; Larsen, Terje S</creator><creatorcontrib>Franekova, Veronika ; Angin, Yeliz ; Hoebers, Nicole T H ; Coumans, Will A ; Simons, Peter J ; Glatz, Jan F C ; Luiken, Joost J F P ; Larsen, Terje S</creatorcontrib><description>Insulin resistance is an important risk factor for the development of several cardiac pathologies, thus advocating strategies for restoring insulin sensitivity of the heart in these conditions. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), mainly eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3), have been shown to improve insulin sensitivity in insulin-sensitive tissues, but their direct effect on insulin signaling and metabolic parameters in the myocardium has not been reported previously. The aim of this study was therefore to examine the ability of EPA and DHA to prevent insulin resistance in isolated rat cardiomyocytes. Primary rat cardiomyocytes were made insulin resistant by 48 h incubation in high insulin (HI) medium. Parallel incubations were supplemented by 200 μM EPA or DHA. Addition of EPA or DHA to the medium prevented the induction of insulin resistance in cardiomyocytes by preserving the phosphorylation state of key proteins in the insulin signaling cascade and by preventing persistent relocation of fatty acid transporter CD36 to the sarcolemma. Only cardiomyocytes incubated in the presence of EPA, however, exhibited improvements in glucose and fatty acid uptake and cell shortening. We conclude that ω-3 PUFAs protect metabolic and functional properties of cardiomyocytes subjected to insulin resistance-evoking conditions.</description><identifier>ISSN: 0363-6143</identifier><identifier>EISSN: 1522-1563</identifier><identifier>DOI: 10.1152/ajpcell.00073.2014</identifier><identifier>PMID: 25472960</identifier><identifier>CODEN: AJPCDD</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Cardiomyocytes ; Cardiotonic Agents - pharmacology ; CD36 Antigens - metabolism ; Cells, Cultured ; Docosahexaenoic Acids - metabolism ; Docosahexaenoic Acids - pharmacology ; Eicosapentaenoic Acid - metabolism ; Eicosapentaenoic Acid - pharmacology ; Energy Metabolism - drug effects ; Fatty acids ; Glucose ; Glucose - metabolism ; Insulin - pharmacology ; Insulin Resistance ; Male ; Myocardial Contraction - drug effects ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - pathology ; Phosphorylation ; Protein Transport ; Proteins ; Rats, Inbred Lew ; Sarcolemma - drug effects ; Sarcolemma - metabolism ; Signal Transduction - drug effects ; Time Factors</subject><ispartof>American Journal of Physiology: Cell Physiology, 2015-02, Vol.308 (4), p.C297-C307</ispartof><rights>Copyright © 2015 the American Physiological Society.</rights><rights>Copyright American Physiological Society Feb 15, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-ee6d329270e0c143eadffdd125ad5310241ec4fd506bc06fb8de9ef2262aea3</citedby><cites>FETCH-LOGICAL-c478t-ee6d329270e0c143eadffdd125ad5310241ec4fd506bc06fb8de9ef2262aea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3039,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25472960$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Franekova, Veronika</creatorcontrib><creatorcontrib>Angin, Yeliz</creatorcontrib><creatorcontrib>Hoebers, Nicole T H</creatorcontrib><creatorcontrib>Coumans, Will A</creatorcontrib><creatorcontrib>Simons, Peter J</creatorcontrib><creatorcontrib>Glatz, Jan F C</creatorcontrib><creatorcontrib>Luiken, Joost J F P</creatorcontrib><creatorcontrib>Larsen, Terje S</creatorcontrib><title>Marine omega-3 fatty acids prevent myocardial insulin resistance and metabolic remodeling as induced experimentally by high insulin exposure</title><title>American Journal of Physiology: Cell Physiology</title><addtitle>Am J Physiol Cell Physiol</addtitle><description>Insulin resistance is an important risk factor for the development of several cardiac pathologies, thus advocating strategies for restoring insulin sensitivity of the heart in these conditions. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), mainly eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3), have been shown to improve insulin sensitivity in insulin-sensitive tissues, but their direct effect on insulin signaling and metabolic parameters in the myocardium has not been reported previously. The aim of this study was therefore to examine the ability of EPA and DHA to prevent insulin resistance in isolated rat cardiomyocytes. Primary rat cardiomyocytes were made insulin resistant by 48 h incubation in high insulin (HI) medium. Parallel incubations were supplemented by 200 μM EPA or DHA. Addition of EPA or DHA to the medium prevented the induction of insulin resistance in cardiomyocytes by preserving the phosphorylation state of key proteins in the insulin signaling cascade and by preventing persistent relocation of fatty acid transporter CD36 to the sarcolemma. Only cardiomyocytes incubated in the presence of EPA, however, exhibited improvements in glucose and fatty acid uptake and cell shortening. We conclude that ω-3 PUFAs protect metabolic and functional properties of cardiomyocytes subjected to insulin resistance-evoking conditions.</description><subject>Animals</subject><subject>Cardiomyocytes</subject><subject>Cardiotonic Agents - pharmacology</subject><subject>CD36 Antigens - metabolism</subject><subject>Cells, Cultured</subject><subject>Docosahexaenoic Acids - metabolism</subject><subject>Docosahexaenoic Acids - pharmacology</subject><subject>Eicosapentaenoic Acid - metabolism</subject><subject>Eicosapentaenoic Acid - pharmacology</subject><subject>Energy Metabolism - drug effects</subject><subject>Fatty acids</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Insulin - pharmacology</subject><subject>Insulin Resistance</subject><subject>Male</subject><subject>Myocardial Contraction - drug effects</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - pathology</subject><subject>Phosphorylation</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Rats, Inbred Lew</subject><subject>Sarcolemma - drug effects</subject><subject>Sarcolemma - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Time Factors</subject><issn>0363-6143</issn><issn>1522-1563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhi0EokvhBTggS1y4ZLHHsZMcUVUoUhEHuEcTe7L1KomDnaDmHXhovHTpgQunOfzf_NLMx9hrKfZSaniPx9nSMOyFEJXag5DlE7bLARRSG_WU7YQyqjCyVBfsRUrHzJVgmufsAnRZQWPEjv36gtFPxMNIBywU73FZNo7Wu8TnSD9pWvi4BYvReRy4n9I6-IlHSj4tOFniODk-0oJdGLzNwRgcZeTAMWXcrZYcp_uZoh9zGQ7DxruN3_nD3WNbjkNaI71kz3ocEr06z0v27eP196ub4vbrp89XH24LW1b1UhAZp6CBSpCw-TpC1_fOSdDotJICSkm27J0WprPC9F3tqKEewAASqkv27qF1juHHSmlpR59Oj8SJwppaWYvayErVzf9Ro3UFoKHO6Nt_0GNY45TPOFFGKVVrmSl4oGwMKUXq2zn_BePWStGepLZnqe0fqe1Jal56c65eu5Hc48pfi-o3kFCh-Q</recordid><startdate>20150215</startdate><enddate>20150215</enddate><creator>Franekova, Veronika</creator><creator>Angin, Yeliz</creator><creator>Hoebers, Nicole T H</creator><creator>Coumans, Will A</creator><creator>Simons, Peter J</creator><creator>Glatz, Jan F C</creator><creator>Luiken, Joost J F P</creator><creator>Larsen, Terje S</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>7X8</scope></search><sort><creationdate>20150215</creationdate><title>Marine omega-3 fatty acids prevent myocardial insulin resistance and metabolic remodeling as induced experimentally by high insulin exposure</title><author>Franekova, Veronika ; Angin, Yeliz ; Hoebers, Nicole T H ; Coumans, Will A ; Simons, Peter J ; Glatz, Jan F C ; Luiken, Joost J F P ; Larsen, Terje S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-ee6d329270e0c143eadffdd125ad5310241ec4fd506bc06fb8de9ef2262aea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Cardiomyocytes</topic><topic>Cardiotonic Agents - pharmacology</topic><topic>CD36 Antigens - metabolism</topic><topic>Cells, Cultured</topic><topic>Docosahexaenoic Acids - metabolism</topic><topic>Docosahexaenoic Acids - pharmacology</topic><topic>Eicosapentaenoic Acid - metabolism</topic><topic>Eicosapentaenoic Acid - pharmacology</topic><topic>Energy Metabolism - drug effects</topic><topic>Fatty acids</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Insulin - pharmacology</topic><topic>Insulin Resistance</topic><topic>Male</topic><topic>Myocardial Contraction - drug effects</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - pathology</topic><topic>Phosphorylation</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Rats, Inbred Lew</topic><topic>Sarcolemma - drug effects</topic><topic>Sarcolemma - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franekova, Veronika</creatorcontrib><creatorcontrib>Angin, Yeliz</creatorcontrib><creatorcontrib>Hoebers, Nicole T H</creatorcontrib><creatorcontrib>Coumans, Will A</creatorcontrib><creatorcontrib>Simons, Peter J</creatorcontrib><creatorcontrib>Glatz, Jan F C</creatorcontrib><creatorcontrib>Luiken, Joost J F P</creatorcontrib><creatorcontrib>Larsen, Terje S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><jtitle>American Journal of Physiology: Cell Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franekova, Veronika</au><au>Angin, Yeliz</au><au>Hoebers, Nicole T H</au><au>Coumans, Will A</au><au>Simons, Peter J</au><au>Glatz, Jan F C</au><au>Luiken, Joost J F P</au><au>Larsen, Terje S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marine omega-3 fatty acids prevent myocardial insulin resistance and metabolic remodeling as induced experimentally by high insulin exposure</atitle><jtitle>American Journal of Physiology: Cell Physiology</jtitle><addtitle>Am J Physiol Cell Physiol</addtitle><date>2015-02-15</date><risdate>2015</risdate><volume>308</volume><issue>4</issue><spage>C297</spage><epage>C307</epage><pages>C297-C307</pages><issn>0363-6143</issn><eissn>1522-1563</eissn><coden>AJPCDD</coden><abstract>Insulin resistance is an important risk factor for the development of several cardiac pathologies, thus advocating strategies for restoring insulin sensitivity of the heart in these conditions. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), mainly eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3), have been shown to improve insulin sensitivity in insulin-sensitive tissues, but their direct effect on insulin signaling and metabolic parameters in the myocardium has not been reported previously. The aim of this study was therefore to examine the ability of EPA and DHA to prevent insulin resistance in isolated rat cardiomyocytes. Primary rat cardiomyocytes were made insulin resistant by 48 h incubation in high insulin (HI) medium. Parallel incubations were supplemented by 200 μM EPA or DHA. Addition of EPA or DHA to the medium prevented the induction of insulin resistance in cardiomyocytes by preserving the phosphorylation state of key proteins in the insulin signaling cascade and by preventing persistent relocation of fatty acid transporter CD36 to the sarcolemma. Only cardiomyocytes incubated in the presence of EPA, however, exhibited improvements in glucose and fatty acid uptake and cell shortening. We conclude that ω-3 PUFAs protect metabolic and functional properties of cardiomyocytes subjected to insulin resistance-evoking conditions.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>25472960</pmid><doi>10.1152/ajpcell.00073.2014</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-6143 |
ispartof | American Journal of Physiology: Cell Physiology, 2015-02, Vol.308 (4), p.C297-C307 |
issn | 0363-6143 1522-1563 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808617389 |
source | MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animals Cardiomyocytes Cardiotonic Agents - pharmacology CD36 Antigens - metabolism Cells, Cultured Docosahexaenoic Acids - metabolism Docosahexaenoic Acids - pharmacology Eicosapentaenoic Acid - metabolism Eicosapentaenoic Acid - pharmacology Energy Metabolism - drug effects Fatty acids Glucose Glucose - metabolism Insulin - pharmacology Insulin Resistance Male Myocardial Contraction - drug effects Myocytes, Cardiac - drug effects Myocytes, Cardiac - metabolism Myocytes, Cardiac - pathology Phosphorylation Protein Transport Proteins Rats, Inbred Lew Sarcolemma - drug effects Sarcolemma - metabolism Signal Transduction - drug effects Time Factors |
title | Marine omega-3 fatty acids prevent myocardial insulin resistance and metabolic remodeling as induced experimentally by high insulin exposure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marine%20omega-3%20fatty%20acids%20prevent%20myocardial%20insulin%20resistance%20and%20metabolic%20remodeling%20as%20induced%20experimentally%20by%20high%20insulin%20exposure&rft.jtitle=American%20Journal%20of%20Physiology:%20Cell%20Physiology&rft.au=Franekova,%20Veronika&rft.date=2015-02-15&rft.volume=308&rft.issue=4&rft.spage=C297&rft.epage=C307&rft.pages=C297-C307&rft.issn=0363-6143&rft.eissn=1522-1563&rft.coden=AJPCDD&rft_id=info:doi/10.1152/ajpcell.00073.2014&rft_dat=%3Cproquest_cross%3E1808617389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656333851&rft_id=info:pmid/25472960&rfr_iscdi=true |