Computer-assisted detection of swallowing difficulty

Highlights • Hyoid movement data attained from videofluoroscopic swallowing study was analyzed. • SVM was employed to classify the data as normal or dysfunctional swallowing. • Features extracted from hyoid movement were selected to minimized redundancy. • Feature selection results would present a d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine 2016-10, Vol.134, p.79-88
Hauptverfasser: Lee, Jung Chan, Seo, Han Gil, Kim, Hee Chan, Han, Tai Ryoon, Oh, Byung-Mo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue
container_start_page 79
container_title Computer methods and programs in biomedicine
container_volume 134
creator Lee, Jung Chan
Seo, Han Gil
Kim, Hee Chan
Han, Tai Ryoon
Oh, Byung-Mo
description Highlights • Hyoid movement data attained from videofluoroscopic swallowing study was analyzed. • SVM was employed to classify the data as normal or dysfunctional swallowing. • Features extracted from hyoid movement were selected to minimized redundancy. • Feature selection results would present a deeper understanding of dysphagia pathophysiology. • The proposed method with an outstanding discrimination performance would be useful as an adjunct diagnostic tool.
doi_str_mv 10.1016/j.cmpb.2016.07.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808607167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0169260715304697</els_id><sourcerecordid>1808607167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-25f8f09b7276a54881d09f6c5a6cda3d606189995deb1fe4fb573faf0a1332723</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVISLZp_0APZY-92B3JlmRDCZQlaQKBHpKchSyNira2tZXshP33kdlNDz3kNAPz3oP5HiGfKZQUqPi2Lc2w60qW9xJkCRROyIo2khWSC35KVvnQFkyAvCAfUtoCAONcnJMLJusGZFWvSL0Jw26eMBY6JZ8mtGuLE5rJh3Ed3Dq96L4PL378vbbeOW_mftp_JGdO9wk_Heclebq5ftzcFve_ft5tftwXpqZ0Khh3jYO2k0wKzeumoRZaJwzXwlhdWQGCNm3bcosddVi7jsvKaQeaVhWTrLokXw-5uxj-zpgmNfhksO_1iGFOijbQ5O-okFnKDlITQ0oRndpFP-i4VxTUQktt1UJLLbQUSJVpZdOXY_7cDWj_Wd7wZMH3gwDzl88eo0rG42jQ-pgZKRv8-_lX_9lN70dvdP8H95i2YY5j5qeoSkyBelj6WuqivIJatLJ6BenTj34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808607167</pqid></control><display><type>article</type><title>Computer-assisted detection of swallowing difficulty</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lee, Jung Chan ; Seo, Han Gil ; Kim, Hee Chan ; Han, Tai Ryoon ; Oh, Byung-Mo</creator><creatorcontrib>Lee, Jung Chan ; Seo, Han Gil ; Kim, Hee Chan ; Han, Tai Ryoon ; Oh, Byung-Mo</creatorcontrib><description>Highlights • Hyoid movement data attained from videofluoroscopic swallowing study was analyzed. • SVM was employed to classify the data as normal or dysfunctional swallowing. • Features extracted from hyoid movement were selected to minimized redundancy. • Feature selection results would present a deeper understanding of dysphagia pathophysiology. • The proposed method with an outstanding discrimination performance would be useful as an adjunct diagnostic tool.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2016.07.010</identifier><identifier>PMID: 27480734</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Biomechanical Phenomena ; Case-Control Studies ; Deglutition disorders ; Deglutition Disorders - diagnosis ; Diagnosis, Computer-Assisted ; Dysphagia ; Humans ; Hyoid bone ; Internal Medicine ; Other ; Support Vector Machine ; Support vector machines ; Swallowing difficulty</subject><ispartof>Computer methods and programs in biomedicine, 2016-10, Vol.134, p.79-88</ispartof><rights>2016 Elsevier Ireland Ltd</rights><rights>Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-25f8f09b7276a54881d09f6c5a6cda3d606189995deb1fe4fb573faf0a1332723</citedby><cites>FETCH-LOGICAL-c411t-25f8f09b7276a54881d09f6c5a6cda3d606189995deb1fe4fb573faf0a1332723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169260715304697$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27480734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jung Chan</creatorcontrib><creatorcontrib>Seo, Han Gil</creatorcontrib><creatorcontrib>Kim, Hee Chan</creatorcontrib><creatorcontrib>Han, Tai Ryoon</creatorcontrib><creatorcontrib>Oh, Byung-Mo</creatorcontrib><title>Computer-assisted detection of swallowing difficulty</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Highlights • Hyoid movement data attained from videofluoroscopic swallowing study was analyzed. • SVM was employed to classify the data as normal or dysfunctional swallowing. • Features extracted from hyoid movement were selected to minimized redundancy. • Feature selection results would present a deeper understanding of dysphagia pathophysiology. • The proposed method with an outstanding discrimination performance would be useful as an adjunct diagnostic tool.</description><subject>Biomechanical Phenomena</subject><subject>Case-Control Studies</subject><subject>Deglutition disorders</subject><subject>Deglutition Disorders - diagnosis</subject><subject>Diagnosis, Computer-Assisted</subject><subject>Dysphagia</subject><subject>Humans</subject><subject>Hyoid bone</subject><subject>Internal Medicine</subject><subject>Other</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Swallowing difficulty</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFr3DAQhUVISLZp_0APZY-92B3JlmRDCZQlaQKBHpKchSyNira2tZXshP33kdlNDz3kNAPz3oP5HiGfKZQUqPi2Lc2w60qW9xJkCRROyIo2khWSC35KVvnQFkyAvCAfUtoCAONcnJMLJusGZFWvSL0Jw26eMBY6JZ8mtGuLE5rJh3Ed3Dq96L4PL378vbbeOW_mftp_JGdO9wk_Heclebq5ftzcFve_ft5tftwXpqZ0Khh3jYO2k0wKzeumoRZaJwzXwlhdWQGCNm3bcosddVi7jsvKaQeaVhWTrLokXw-5uxj-zpgmNfhksO_1iGFOijbQ5O-okFnKDlITQ0oRndpFP-i4VxTUQktt1UJLLbQUSJVpZdOXY_7cDWj_Wd7wZMH3gwDzl88eo0rG42jQ-pgZKRv8-_lX_9lN70dvdP8H95i2YY5j5qeoSkyBelj6WuqivIJatLJ6BenTj34</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Lee, Jung Chan</creator><creator>Seo, Han Gil</creator><creator>Kim, Hee Chan</creator><creator>Han, Tai Ryoon</creator><creator>Oh, Byung-Mo</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161001</creationdate><title>Computer-assisted detection of swallowing difficulty</title><author>Lee, Jung Chan ; Seo, Han Gil ; Kim, Hee Chan ; Han, Tai Ryoon ; Oh, Byung-Mo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-25f8f09b7276a54881d09f6c5a6cda3d606189995deb1fe4fb573faf0a1332723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biomechanical Phenomena</topic><topic>Case-Control Studies</topic><topic>Deglutition disorders</topic><topic>Deglutition Disorders - diagnosis</topic><topic>Diagnosis, Computer-Assisted</topic><topic>Dysphagia</topic><topic>Humans</topic><topic>Hyoid bone</topic><topic>Internal Medicine</topic><topic>Other</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Swallowing difficulty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jung Chan</creatorcontrib><creatorcontrib>Seo, Han Gil</creatorcontrib><creatorcontrib>Kim, Hee Chan</creatorcontrib><creatorcontrib>Han, Tai Ryoon</creatorcontrib><creatorcontrib>Oh, Byung-Mo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jung Chan</au><au>Seo, Han Gil</au><au>Kim, Hee Chan</au><au>Han, Tai Ryoon</au><au>Oh, Byung-Mo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-assisted detection of swallowing difficulty</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>134</volume><spage>79</spage><epage>88</epage><pages>79-88</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>Highlights • Hyoid movement data attained from videofluoroscopic swallowing study was analyzed. • SVM was employed to classify the data as normal or dysfunctional swallowing. • Features extracted from hyoid movement were selected to minimized redundancy. • Feature selection results would present a deeper understanding of dysphagia pathophysiology. • The proposed method with an outstanding discrimination performance would be useful as an adjunct diagnostic tool.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>27480734</pmid><doi>10.1016/j.cmpb.2016.07.010</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-2607
ispartof Computer methods and programs in biomedicine, 2016-10, Vol.134, p.79-88
issn 0169-2607
1872-7565
language eng
recordid cdi_proquest_miscellaneous_1808607167
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biomechanical Phenomena
Case-Control Studies
Deglutition disorders
Deglutition Disorders - diagnosis
Diagnosis, Computer-Assisted
Dysphagia
Humans
Hyoid bone
Internal Medicine
Other
Support Vector Machine
Support vector machines
Swallowing difficulty
title Computer-assisted detection of swallowing difficulty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-assisted%20detection%20of%20swallowing%20difficulty&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Lee,%20Jung%20Chan&rft.date=2016-10-01&rft.volume=134&rft.spage=79&rft.epage=88&rft.pages=79-88&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2016.07.010&rft_dat=%3Cproquest_cross%3E1808607167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808607167&rft_id=info:pmid/27480734&rft_els_id=1_s2_0_S0169260715304697&rfr_iscdi=true