Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations
We examined the density, bulk sound (compressional) velocity, and Grüneisen parameter of liquid pure Fe, Fe100H28 (0.50 wt % H), Fe88H40 (0.81 wt % H), and Fe76H52 (1.22 wt % H) at Earth's outer core pressure and temperature (P‐T) conditions (~100 to 350 GPa, 4000 to 7000 K) based on first‐prin...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2015-09, Vol.42 (18), p.7513-7520 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7520 |
---|---|
container_issue | 18 |
container_start_page | 7513 |
container_title | Geophysical research letters |
container_volume | 42 |
creator | Umemoto, Koichiro Hirose, Kei |
description | We examined the density, bulk sound (compressional) velocity, and Grüneisen parameter of liquid pure Fe, Fe100H28 (0.50 wt % H), Fe88H40 (0.81 wt % H), and Fe76H52 (1.22 wt % H) at Earth's outer core pressure and temperature (P‐T) conditions (~100 to 350 GPa, 4000 to 7000 K) based on first‐principles molecular dynamics calculations. The results demonstrate that the thermodynamic Grüneisen parameter of liquid iron alloy decreases with increasing pressure, temperature, and hydrogen concentration, indicating a relatively small temperature gradient in the outer core when hydrogen is present. Along such temperature profile, both the density and compressional velocity of liquid iron containing ~1 wt % hydrogen match seismological observations. It suggests that hydrogen could be a primary light element in the core, although the shear velocity of the inner core is not reconciled with solid Fe‐H alloy and thus requires another impurity element.
Key Points
Liquid Fe‐H alloys under the outer core conditions are calculated by first principles
Approximately 1 wt % hydrogen concentration is found to reproduce density and bulk sound velocity of PREM
Gruneisen parameter depends on hydrogen concentration |
doi_str_mv | 10.1002/2015GL065899 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808380184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3838723721</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5428-cd4969a4ebc24f5d99043a62c285ba827571db993b9dfc85004d4c1ec7999ec03</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmALUYmlcOMHROLCgZTxt32EAltQtJWqVj1ajuOAixtv7USQf49hEUIc2ovHh-cdjT0IvcBwggHIGwKYbzsQXGn9CG2wZqxVAPIx2gDoeidSPEFPS7kBAAoUb9BVF-6WMDQhp6n9ug45ffFTY2NMa2ns3KRl9rlxKft6TEOYQ5pK06_NGHKZ230Okwv76EvjbHRLtL_BM3Q02lj88z_1GF19_HB5etZ259tPp2-71nJGVOsGpoW2zPeOsJEPWgOjVhBHFO9tnZZLPPRa014Po1McgA3MYe-k1to7oMfo1aHvPqe7xZfZ3IbifIx28mkpBitQVAFW7GEqBcGEESorffkfvUlLnupDDNYYlKQSs3uVJETg6kRVrw_K5VRK9qOpX3Zr82owmF9LM_8urXJy4N9D9Ou91mwvOk6ZUDXUHkKhzP7H35DN34yos3Jzvduaa_xZXezevzM7-hNbb6Wj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722618736</pqid></control><display><type>article</type><title>Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Umemoto, Koichiro ; Hirose, Kei</creator><creatorcontrib>Umemoto, Koichiro ; Hirose, Kei</creatorcontrib><description>We examined the density, bulk sound (compressional) velocity, and Grüneisen parameter of liquid pure Fe, Fe100H28 (0.50 wt % H), Fe88H40 (0.81 wt % H), and Fe76H52 (1.22 wt % H) at Earth's outer core pressure and temperature (P‐T) conditions (~100 to 350 GPa, 4000 to 7000 K) based on first‐principles molecular dynamics calculations. The results demonstrate that the thermodynamic Grüneisen parameter of liquid iron alloy decreases with increasing pressure, temperature, and hydrogen concentration, indicating a relatively small temperature gradient in the outer core when hydrogen is present. Along such temperature profile, both the density and compressional velocity of liquid iron containing ~1 wt % hydrogen match seismological observations. It suggests that hydrogen could be a primary light element in the core, although the shear velocity of the inner core is not reconciled with solid Fe‐H alloy and thus requires another impurity element.
Key Points
Liquid Fe‐H alloys under the outer core conditions are calculated by first principles
Approximately 1 wt % hydrogen concentration is found to reproduce density and bulk sound velocity of PREM
Gruneisen parameter depends on hydrogen concentration</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL065899</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Alloys ; Bulk density ; Concentration gradient ; Density ; Dynamics ; Earth ; Earth core ; Ferrous alloys ; first principles ; Gruneisen parameter ; Hydrogen ; Iron ; Iron alloys ; liquid iron alloy ; Liquids ; Mathematical analysis ; Molecular dynamics ; outer core ; Pressure ; Principles ; Seismology ; Shear ; Sound ; Temperature effects ; Temperature gradients ; Temperature profile ; Velocity</subject><ispartof>Geophysical research letters, 2015-09, Vol.42 (18), p.7513-7520</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5428-cd4969a4ebc24f5d99043a62c285ba827571db993b9dfc85004d4c1ec7999ec03</citedby><cites>FETCH-LOGICAL-a5428-cd4969a4ebc24f5d99043a62c285ba827571db993b9dfc85004d4c1ec7999ec03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL065899$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL065899$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,11497,27907,27908,45557,45558,46392,46451,46816,46875</link.rule.ids></links><search><creatorcontrib>Umemoto, Koichiro</creatorcontrib><creatorcontrib>Hirose, Kei</creatorcontrib><title>Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>We examined the density, bulk sound (compressional) velocity, and Grüneisen parameter of liquid pure Fe, Fe100H28 (0.50 wt % H), Fe88H40 (0.81 wt % H), and Fe76H52 (1.22 wt % H) at Earth's outer core pressure and temperature (P‐T) conditions (~100 to 350 GPa, 4000 to 7000 K) based on first‐principles molecular dynamics calculations. The results demonstrate that the thermodynamic Grüneisen parameter of liquid iron alloy decreases with increasing pressure, temperature, and hydrogen concentration, indicating a relatively small temperature gradient in the outer core when hydrogen is present. Along such temperature profile, both the density and compressional velocity of liquid iron containing ~1 wt % hydrogen match seismological observations. It suggests that hydrogen could be a primary light element in the core, although the shear velocity of the inner core is not reconciled with solid Fe‐H alloy and thus requires another impurity element.
Key Points
Liquid Fe‐H alloys under the outer core conditions are calculated by first principles
Approximately 1 wt % hydrogen concentration is found to reproduce density and bulk sound velocity of PREM
Gruneisen parameter depends on hydrogen concentration</description><subject>Alloys</subject><subject>Bulk density</subject><subject>Concentration gradient</subject><subject>Density</subject><subject>Dynamics</subject><subject>Earth</subject><subject>Earth core</subject><subject>Ferrous alloys</subject><subject>first principles</subject><subject>Gruneisen parameter</subject><subject>Hydrogen</subject><subject>Iron</subject><subject>Iron alloys</subject><subject>liquid iron alloy</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>outer core</subject><subject>Pressure</subject><subject>Principles</subject><subject>Seismology</subject><subject>Shear</subject><subject>Sound</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><subject>Temperature profile</subject><subject>Velocity</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqF0U1v1DAQBmALUYmlcOMHROLCgZTxt32EAltQtJWqVj1ajuOAixtv7USQf49hEUIc2ovHh-cdjT0IvcBwggHIGwKYbzsQXGn9CG2wZqxVAPIx2gDoeidSPEFPS7kBAAoUb9BVF-6WMDQhp6n9ug45ffFTY2NMa2ns3KRl9rlxKft6TEOYQ5pK06_NGHKZ230Okwv76EvjbHRLtL_BM3Q02lj88z_1GF19_HB5etZ259tPp2-71nJGVOsGpoW2zPeOsJEPWgOjVhBHFO9tnZZLPPRa014Po1McgA3MYe-k1to7oMfo1aHvPqe7xZfZ3IbifIx28mkpBitQVAFW7GEqBcGEESorffkfvUlLnupDDNYYlKQSs3uVJETg6kRVrw_K5VRK9qOpX3Zr82owmF9LM_8urXJy4N9D9Ou91mwvOk6ZUDXUHkKhzP7H35DN34yos3Jzvduaa_xZXezevzM7-hNbb6Wj</recordid><startdate>20150928</startdate><enddate>20150928</enddate><creator>Umemoto, Koichiro</creator><creator>Hirose, Kei</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20150928</creationdate><title>Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations</title><author>Umemoto, Koichiro ; Hirose, Kei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5428-cd4969a4ebc24f5d99043a62c285ba827571db993b9dfc85004d4c1ec7999ec03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloys</topic><topic>Bulk density</topic><topic>Concentration gradient</topic><topic>Density</topic><topic>Dynamics</topic><topic>Earth</topic><topic>Earth core</topic><topic>Ferrous alloys</topic><topic>first principles</topic><topic>Gruneisen parameter</topic><topic>Hydrogen</topic><topic>Iron</topic><topic>Iron alloys</topic><topic>liquid iron alloy</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>outer core</topic><topic>Pressure</topic><topic>Principles</topic><topic>Seismology</topic><topic>Shear</topic><topic>Sound</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><topic>Temperature profile</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Umemoto, Koichiro</creatorcontrib><creatorcontrib>Hirose, Kei</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Umemoto, Koichiro</au><au>Hirose, Kei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2015-09-28</date><risdate>2015</risdate><volume>42</volume><issue>18</issue><spage>7513</spage><epage>7520</epage><pages>7513-7520</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>We examined the density, bulk sound (compressional) velocity, and Grüneisen parameter of liquid pure Fe, Fe100H28 (0.50 wt % H), Fe88H40 (0.81 wt % H), and Fe76H52 (1.22 wt % H) at Earth's outer core pressure and temperature (P‐T) conditions (~100 to 350 GPa, 4000 to 7000 K) based on first‐principles molecular dynamics calculations. The results demonstrate that the thermodynamic Grüneisen parameter of liquid iron alloy decreases with increasing pressure, temperature, and hydrogen concentration, indicating a relatively small temperature gradient in the outer core when hydrogen is present. Along such temperature profile, both the density and compressional velocity of liquid iron containing ~1 wt % hydrogen match seismological observations. It suggests that hydrogen could be a primary light element in the core, although the shear velocity of the inner core is not reconciled with solid Fe‐H alloy and thus requires another impurity element.
Key Points
Liquid Fe‐H alloys under the outer core conditions are calculated by first principles
Approximately 1 wt % hydrogen concentration is found to reproduce density and bulk sound velocity of PREM
Gruneisen parameter depends on hydrogen concentration</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GL065899</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2015-09, Vol.42 (18), p.7513-7520 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808380184 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals |
subjects | Alloys Bulk density Concentration gradient Density Dynamics Earth Earth core Ferrous alloys first principles Gruneisen parameter Hydrogen Iron Iron alloys liquid iron alloy Liquids Mathematical analysis Molecular dynamics outer core Pressure Principles Seismology Shear Sound Temperature effects Temperature gradients Temperature profile Velocity |
title | Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20iron-hydrogen%20alloys%20at%20outer%20core%20conditions%20by%20first-principles%20calculations&rft.jtitle=Geophysical%20research%20letters&rft.au=Umemoto,%20Koichiro&rft.date=2015-09-28&rft.volume=42&rft.issue=18&rft.spage=7513&rft.epage=7520&rft.pages=7513-7520&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL065899&rft_dat=%3Cproquest_cross%3E3838723721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1722618736&rft_id=info:pmid/&rfr_iscdi=true |