Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations

We examined the density, bulk sound (compressional) velocity, and Grüneisen parameter of liquid pure Fe, Fe100H28 (0.50 wt % H), Fe88H40 (0.81 wt % H), and Fe76H52 (1.22 wt % H) at Earth's outer core pressure and temperature (P‐T) conditions (~100 to 350 GPa, 4000 to 7000 K) based on first‐prin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2015-09, Vol.42 (18), p.7513-7520
Hauptverfasser: Umemoto, Koichiro, Hirose, Kei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7520
container_issue 18
container_start_page 7513
container_title Geophysical research letters
container_volume 42
creator Umemoto, Koichiro
Hirose, Kei
description We examined the density, bulk sound (compressional) velocity, and Grüneisen parameter of liquid pure Fe, Fe100H28 (0.50 wt % H), Fe88H40 (0.81 wt % H), and Fe76H52 (1.22 wt % H) at Earth's outer core pressure and temperature (P‐T) conditions (~100 to 350 GPa, 4000 to 7000 K) based on first‐principles molecular dynamics calculations. The results demonstrate that the thermodynamic Grüneisen parameter of liquid iron alloy decreases with increasing pressure, temperature, and hydrogen concentration, indicating a relatively small temperature gradient in the outer core when hydrogen is present. Along such temperature profile, both the density and compressional velocity of liquid iron containing ~1 wt % hydrogen match seismological observations. It suggests that hydrogen could be a primary light element in the core, although the shear velocity of the inner core is not reconciled with solid Fe‐H alloy and thus requires another impurity element. Key Points Liquid Fe‐H alloys under the outer core conditions are calculated by first principles Approximately 1 wt % hydrogen concentration is found to reproduce density and bulk sound velocity of PREM Gruneisen parameter depends on hydrogen concentration
doi_str_mv 10.1002/2015GL065899
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808380184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3838723721</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5428-cd4969a4ebc24f5d99043a62c285ba827571db993b9dfc85004d4c1ec7999ec03</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmALUYmlcOMHROLCgZTxt32EAltQtJWqVj1ajuOAixtv7USQf49hEUIc2ovHh-cdjT0IvcBwggHIGwKYbzsQXGn9CG2wZqxVAPIx2gDoeidSPEFPS7kBAAoUb9BVF-6WMDQhp6n9ug45ffFTY2NMa2ns3KRl9rlxKft6TEOYQ5pK06_NGHKZ230Okwv76EvjbHRLtL_BM3Q02lj88z_1GF19_HB5etZ259tPp2-71nJGVOsGpoW2zPeOsJEPWgOjVhBHFO9tnZZLPPRa014Po1McgA3MYe-k1to7oMfo1aHvPqe7xZfZ3IbifIx28mkpBitQVAFW7GEqBcGEESorffkfvUlLnupDDNYYlKQSs3uVJETg6kRVrw_K5VRK9qOpX3Zr82owmF9LM_8urXJy4N9D9Ou91mwvOk6ZUDXUHkKhzP7H35DN34yos3Jzvduaa_xZXezevzM7-hNbb6Wj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722618736</pqid></control><display><type>article</type><title>Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Umemoto, Koichiro ; Hirose, Kei</creator><creatorcontrib>Umemoto, Koichiro ; Hirose, Kei</creatorcontrib><description>We examined the density, bulk sound (compressional) velocity, and Grüneisen parameter of liquid pure Fe, Fe100H28 (0.50 wt % H), Fe88H40 (0.81 wt % H), and Fe76H52 (1.22 wt % H) at Earth's outer core pressure and temperature (P‐T) conditions (~100 to 350 GPa, 4000 to 7000 K) based on first‐principles molecular dynamics calculations. The results demonstrate that the thermodynamic Grüneisen parameter of liquid iron alloy decreases with increasing pressure, temperature, and hydrogen concentration, indicating a relatively small temperature gradient in the outer core when hydrogen is present. Along such temperature profile, both the density and compressional velocity of liquid iron containing ~1 wt % hydrogen match seismological observations. It suggests that hydrogen could be a primary light element in the core, although the shear velocity of the inner core is not reconciled with solid Fe‐H alloy and thus requires another impurity element. Key Points Liquid Fe‐H alloys under the outer core conditions are calculated by first principles Approximately 1 wt % hydrogen concentration is found to reproduce density and bulk sound velocity of PREM Gruneisen parameter depends on hydrogen concentration</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL065899</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Alloys ; Bulk density ; Concentration gradient ; Density ; Dynamics ; Earth ; Earth core ; Ferrous alloys ; first principles ; Gruneisen parameter ; Hydrogen ; Iron ; Iron alloys ; liquid iron alloy ; Liquids ; Mathematical analysis ; Molecular dynamics ; outer core ; Pressure ; Principles ; Seismology ; Shear ; Sound ; Temperature effects ; Temperature gradients ; Temperature profile ; Velocity</subject><ispartof>Geophysical research letters, 2015-09, Vol.42 (18), p.7513-7520</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5428-cd4969a4ebc24f5d99043a62c285ba827571db993b9dfc85004d4c1ec7999ec03</citedby><cites>FETCH-LOGICAL-a5428-cd4969a4ebc24f5d99043a62c285ba827571db993b9dfc85004d4c1ec7999ec03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL065899$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL065899$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,11497,27907,27908,45557,45558,46392,46451,46816,46875</link.rule.ids></links><search><creatorcontrib>Umemoto, Koichiro</creatorcontrib><creatorcontrib>Hirose, Kei</creatorcontrib><title>Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>We examined the density, bulk sound (compressional) velocity, and Grüneisen parameter of liquid pure Fe, Fe100H28 (0.50 wt % H), Fe88H40 (0.81 wt % H), and Fe76H52 (1.22 wt % H) at Earth's outer core pressure and temperature (P‐T) conditions (~100 to 350 GPa, 4000 to 7000 K) based on first‐principles molecular dynamics calculations. The results demonstrate that the thermodynamic Grüneisen parameter of liquid iron alloy decreases with increasing pressure, temperature, and hydrogen concentration, indicating a relatively small temperature gradient in the outer core when hydrogen is present. Along such temperature profile, both the density and compressional velocity of liquid iron containing ~1 wt % hydrogen match seismological observations. It suggests that hydrogen could be a primary light element in the core, although the shear velocity of the inner core is not reconciled with solid Fe‐H alloy and thus requires another impurity element. Key Points Liquid Fe‐H alloys under the outer core conditions are calculated by first principles Approximately 1 wt % hydrogen concentration is found to reproduce density and bulk sound velocity of PREM Gruneisen parameter depends on hydrogen concentration</description><subject>Alloys</subject><subject>Bulk density</subject><subject>Concentration gradient</subject><subject>Density</subject><subject>Dynamics</subject><subject>Earth</subject><subject>Earth core</subject><subject>Ferrous alloys</subject><subject>first principles</subject><subject>Gruneisen parameter</subject><subject>Hydrogen</subject><subject>Iron</subject><subject>Iron alloys</subject><subject>liquid iron alloy</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>outer core</subject><subject>Pressure</subject><subject>Principles</subject><subject>Seismology</subject><subject>Shear</subject><subject>Sound</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><subject>Temperature profile</subject><subject>Velocity</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqF0U1v1DAQBmALUYmlcOMHROLCgZTxt32EAltQtJWqVj1ajuOAixtv7USQf49hEUIc2ovHh-cdjT0IvcBwggHIGwKYbzsQXGn9CG2wZqxVAPIx2gDoeidSPEFPS7kBAAoUb9BVF-6WMDQhp6n9ug45ffFTY2NMa2ns3KRl9rlxKft6TEOYQ5pK06_NGHKZ230Okwv76EvjbHRLtL_BM3Q02lj88z_1GF19_HB5etZ259tPp2-71nJGVOsGpoW2zPeOsJEPWgOjVhBHFO9tnZZLPPRa014Po1McgA3MYe-k1to7oMfo1aHvPqe7xZfZ3IbifIx28mkpBitQVAFW7GEqBcGEESorffkfvUlLnupDDNYYlKQSs3uVJETg6kRVrw_K5VRK9qOpX3Zr82owmF9LM_8urXJy4N9D9Ou91mwvOk6ZUDXUHkKhzP7H35DN34yos3Jzvduaa_xZXezevzM7-hNbb6Wj</recordid><startdate>20150928</startdate><enddate>20150928</enddate><creator>Umemoto, Koichiro</creator><creator>Hirose, Kei</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20150928</creationdate><title>Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations</title><author>Umemoto, Koichiro ; Hirose, Kei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5428-cd4969a4ebc24f5d99043a62c285ba827571db993b9dfc85004d4c1ec7999ec03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloys</topic><topic>Bulk density</topic><topic>Concentration gradient</topic><topic>Density</topic><topic>Dynamics</topic><topic>Earth</topic><topic>Earth core</topic><topic>Ferrous alloys</topic><topic>first principles</topic><topic>Gruneisen parameter</topic><topic>Hydrogen</topic><topic>Iron</topic><topic>Iron alloys</topic><topic>liquid iron alloy</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>outer core</topic><topic>Pressure</topic><topic>Principles</topic><topic>Seismology</topic><topic>Shear</topic><topic>Sound</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><topic>Temperature profile</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Umemoto, Koichiro</creatorcontrib><creatorcontrib>Hirose, Kei</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Umemoto, Koichiro</au><au>Hirose, Kei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2015-09-28</date><risdate>2015</risdate><volume>42</volume><issue>18</issue><spage>7513</spage><epage>7520</epage><pages>7513-7520</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>We examined the density, bulk sound (compressional) velocity, and Grüneisen parameter of liquid pure Fe, Fe100H28 (0.50 wt % H), Fe88H40 (0.81 wt % H), and Fe76H52 (1.22 wt % H) at Earth's outer core pressure and temperature (P‐T) conditions (~100 to 350 GPa, 4000 to 7000 K) based on first‐principles molecular dynamics calculations. The results demonstrate that the thermodynamic Grüneisen parameter of liquid iron alloy decreases with increasing pressure, temperature, and hydrogen concentration, indicating a relatively small temperature gradient in the outer core when hydrogen is present. Along such temperature profile, both the density and compressional velocity of liquid iron containing ~1 wt % hydrogen match seismological observations. It suggests that hydrogen could be a primary light element in the core, although the shear velocity of the inner core is not reconciled with solid Fe‐H alloy and thus requires another impurity element. Key Points Liquid Fe‐H alloys under the outer core conditions are calculated by first principles Approximately 1 wt % hydrogen concentration is found to reproduce density and bulk sound velocity of PREM Gruneisen parameter depends on hydrogen concentration</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GL065899</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2015-09, Vol.42 (18), p.7513-7520
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1808380184
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects Alloys
Bulk density
Concentration gradient
Density
Dynamics
Earth
Earth core
Ferrous alloys
first principles
Gruneisen parameter
Hydrogen
Iron
Iron alloys
liquid iron alloy
Liquids
Mathematical analysis
Molecular dynamics
outer core
Pressure
Principles
Seismology
Shear
Sound
Temperature effects
Temperature gradients
Temperature profile
Velocity
title Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20iron-hydrogen%20alloys%20at%20outer%20core%20conditions%20by%20first-principles%20calculations&rft.jtitle=Geophysical%20research%20letters&rft.au=Umemoto,%20Koichiro&rft.date=2015-09-28&rft.volume=42&rft.issue=18&rft.spage=7513&rft.epage=7520&rft.pages=7513-7520&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL065899&rft_dat=%3Cproquest_cross%3E3838723721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1722618736&rft_id=info:pmid/&rfr_iscdi=true