Modeling aftershocks as a stretched exponential relaxation

The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2015-11, Vol.42 (22), p.9726-9732
1. Verfasser: Mignan, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9732
container_issue 22
container_start_page 9726
container_title Geophysical research letters
container_volume 42
creator Mignan, A.
description The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After reviewing the aftershock models published from the late nineteenth century until today, I solely compare the power law, pure exponential and stretched exponential expressions defined in their simplest forms. By applying statistical methods recommended recently in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest‐neighbor, second‐order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simple relaxation process, in accordance with most other relaxation processes observed in Nature. Key Points Aftershocks are shown to follow a stretched exponential temporal decay instead of a power law This trend is observed for aftershock sequences defined from three different declustering techniques A stretched exponential law suggests that the crust behaves as a homogeneously disordered solid
doi_str_mv 10.1002/2015GL066232
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808379575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3939335631</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5845-a56f66abc0ca7e1488619d3e5cfb1b5eb68448200c80d8209677bdad21f273c3</originalsourceid><addsrcrecordid>eNqN0EtLxDAQAOAgCq6Pmz-g4MWDq5OkedSbLG4VVgWRFbyENJ1qtduuSRd3_72RFREPIgwzc_hmSIaQAwonFICdMqAin4CUjLMNMqBZmg41gNokA4As9kzJbbITwgsAcOB0QM6uuxKbun1KbNWjD8-dew2JjZGE3mPvnrFMcDnvWmz72jaJx8YubV937R7ZqmwTcP-r7pL78cX96HI4uc2vRueToRU6FTHLSkpbOHBWIU21ljQrOQpXFbQQWEidppoBOA1lrJlUqihtyWjFFHd8lxyt185997bA0JtZHRw2jW2xWwRDNWiuMqHEfyikWkQe6eEv-tItfBv_YaiSVLKM0TSq47VyvgvBY2Xmvp5ZvzIUzOfJzc-TR87W_L1ucPWnNfndRHApPx89XA_Vocfl95D1r0YqroR5uMnN9JFCPqZTM-UfTOOPEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761629214</pqid></control><display><type>article</type><title>Modeling aftershocks as a stretched exponential relaxation</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Mignan, A.</creator><creatorcontrib>Mignan, A.</creatorcontrib><description>The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After reviewing the aftershock models published from the late nineteenth century until today, I solely compare the power law, pure exponential and stretched exponential expressions defined in their simplest forms. By applying statistical methods recommended recently in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest‐neighbor, second‐order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simple relaxation process, in accordance with most other relaxation processes observed in Nature. Key Points Aftershocks are shown to follow a stretched exponential temporal decay instead of a power law This trend is observed for aftershock sequences defined from three different declustering techniques A stretched exponential law suggests that the crust behaves as a homogeneously disordered solid</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL066232</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>19th century ; aftershock ; Aftershocks ; Crusts ; data fitting ; Decay rate ; Decomposition ; Earthquakes ; Geophysics ; Mathematical models ; meta-analysis ; Omori law ; Power law ; Seismic activity ; Statistical methods ; stretched exponential ; Trends</subject><ispartof>Geophysical research letters, 2015-11, Vol.42 (22), p.9726-9732</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5845-a56f66abc0ca7e1488619d3e5cfb1b5eb68448200c80d8209677bdad21f273c3</citedby><cites>FETCH-LOGICAL-a5845-a56f66abc0ca7e1488619d3e5cfb1b5eb68448200c80d8209677bdad21f273c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL066232$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL066232$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,11497,27907,27908,45557,45558,46392,46451,46816,46875</link.rule.ids></links><search><creatorcontrib>Mignan, A.</creatorcontrib><title>Modeling aftershocks as a stretched exponential relaxation</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After reviewing the aftershock models published from the late nineteenth century until today, I solely compare the power law, pure exponential and stretched exponential expressions defined in their simplest forms. By applying statistical methods recommended recently in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest‐neighbor, second‐order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simple relaxation process, in accordance with most other relaxation processes observed in Nature. Key Points Aftershocks are shown to follow a stretched exponential temporal decay instead of a power law This trend is observed for aftershock sequences defined from three different declustering techniques A stretched exponential law suggests that the crust behaves as a homogeneously disordered solid</description><subject>19th century</subject><subject>aftershock</subject><subject>Aftershocks</subject><subject>Crusts</subject><subject>data fitting</subject><subject>Decay rate</subject><subject>Decomposition</subject><subject>Earthquakes</subject><subject>Geophysics</subject><subject>Mathematical models</subject><subject>meta-analysis</subject><subject>Omori law</subject><subject>Power law</subject><subject>Seismic activity</subject><subject>Statistical methods</subject><subject>stretched exponential</subject><subject>Trends</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0EtLxDAQAOAgCq6Pmz-g4MWDq5OkedSbLG4VVgWRFbyENJ1qtduuSRd3_72RFREPIgwzc_hmSIaQAwonFICdMqAin4CUjLMNMqBZmg41gNokA4As9kzJbbITwgsAcOB0QM6uuxKbun1KbNWjD8-dew2JjZGE3mPvnrFMcDnvWmz72jaJx8YubV937R7ZqmwTcP-r7pL78cX96HI4uc2vRueToRU6FTHLSkpbOHBWIU21ljQrOQpXFbQQWEidppoBOA1lrJlUqihtyWjFFHd8lxyt185997bA0JtZHRw2jW2xWwRDNWiuMqHEfyikWkQe6eEv-tItfBv_YaiSVLKM0TSq47VyvgvBY2Xmvp5ZvzIUzOfJzc-TR87W_L1ucPWnNfndRHApPx89XA_Vocfl95D1r0YqroR5uMnN9JFCPqZTM-UfTOOPEg</recordid><startdate>20151128</startdate><enddate>20151128</enddate><creator>Mignan, A.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20151128</creationdate><title>Modeling aftershocks as a stretched exponential relaxation</title><author>Mignan, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5845-a56f66abc0ca7e1488619d3e5cfb1b5eb68448200c80d8209677bdad21f273c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>19th century</topic><topic>aftershock</topic><topic>Aftershocks</topic><topic>Crusts</topic><topic>data fitting</topic><topic>Decay rate</topic><topic>Decomposition</topic><topic>Earthquakes</topic><topic>Geophysics</topic><topic>Mathematical models</topic><topic>meta-analysis</topic><topic>Omori law</topic><topic>Power law</topic><topic>Seismic activity</topic><topic>Statistical methods</topic><topic>stretched exponential</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mignan, A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mignan, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling aftershocks as a stretched exponential relaxation</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2015-11-28</date><risdate>2015</risdate><volume>42</volume><issue>22</issue><spage>9726</spage><epage>9732</epage><pages>9726-9732</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After reviewing the aftershock models published from the late nineteenth century until today, I solely compare the power law, pure exponential and stretched exponential expressions defined in their simplest forms. By applying statistical methods recommended recently in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest‐neighbor, second‐order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simple relaxation process, in accordance with most other relaxation processes observed in Nature. Key Points Aftershocks are shown to follow a stretched exponential temporal decay instead of a power law This trend is observed for aftershock sequences defined from three different declustering techniques A stretched exponential law suggests that the crust behaves as a homogeneously disordered solid</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GL066232</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2015-11, Vol.42 (22), p.9726-9732
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1808379575
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library
subjects 19th century
aftershock
Aftershocks
Crusts
data fitting
Decay rate
Decomposition
Earthquakes
Geophysics
Mathematical models
meta-analysis
Omori law
Power law
Seismic activity
Statistical methods
stretched exponential
Trends
title Modeling aftershocks as a stretched exponential relaxation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20aftershocks%20as%20a%20stretched%20exponential%20relaxation&rft.jtitle=Geophysical%20research%20letters&rft.au=Mignan,%20A.&rft.date=2015-11-28&rft.volume=42&rft.issue=22&rft.spage=9726&rft.epage=9732&rft.pages=9726-9732&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL066232&rft_dat=%3Cproquest_cross%3E3939335631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761629214&rft_id=info:pmid/&rfr_iscdi=true