Modeling aftershocks as a stretched exponential relaxation
The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After re...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2015-11, Vol.42 (22), p.9726-9732 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9732 |
---|---|
container_issue | 22 |
container_start_page | 9726 |
container_title | Geophysical research letters |
container_volume | 42 |
creator | Mignan, A. |
description | The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After reviewing the aftershock models published from the late nineteenth century until today, I solely compare the power law, pure exponential and stretched exponential expressions defined in their simplest forms. By applying statistical methods recommended recently in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest‐neighbor, second‐order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simple relaxation process, in accordance with most other relaxation processes observed in Nature.
Key Points
Aftershocks are shown to follow a stretched exponential temporal decay instead of a power law
This trend is observed for aftershock sequences defined from three different declustering techniques
A stretched exponential law suggests that the crust behaves as a homogeneously disordered solid |
doi_str_mv | 10.1002/2015GL066232 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808379575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3939335631</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5845-a56f66abc0ca7e1488619d3e5cfb1b5eb68448200c80d8209677bdad21f273c3</originalsourceid><addsrcrecordid>eNqN0EtLxDAQAOAgCq6Pmz-g4MWDq5OkedSbLG4VVgWRFbyENJ1qtduuSRd3_72RFREPIgwzc_hmSIaQAwonFICdMqAin4CUjLMNMqBZmg41gNokA4As9kzJbbITwgsAcOB0QM6uuxKbun1KbNWjD8-dew2JjZGE3mPvnrFMcDnvWmz72jaJx8YubV937R7ZqmwTcP-r7pL78cX96HI4uc2vRueToRU6FTHLSkpbOHBWIU21ljQrOQpXFbQQWEidppoBOA1lrJlUqihtyWjFFHd8lxyt185997bA0JtZHRw2jW2xWwRDNWiuMqHEfyikWkQe6eEv-tItfBv_YaiSVLKM0TSq47VyvgvBY2Xmvp5ZvzIUzOfJzc-TR87W_L1ucPWnNfndRHApPx89XA_Vocfl95D1r0YqroR5uMnN9JFCPqZTM-UfTOOPEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761629214</pqid></control><display><type>article</type><title>Modeling aftershocks as a stretched exponential relaxation</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Mignan, A.</creator><creatorcontrib>Mignan, A.</creatorcontrib><description>The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After reviewing the aftershock models published from the late nineteenth century until today, I solely compare the power law, pure exponential and stretched exponential expressions defined in their simplest forms. By applying statistical methods recommended recently in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest‐neighbor, second‐order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simple relaxation process, in accordance with most other relaxation processes observed in Nature.
Key Points
Aftershocks are shown to follow a stretched exponential temporal decay instead of a power law
This trend is observed for aftershock sequences defined from three different declustering techniques
A stretched exponential law suggests that the crust behaves as a homogeneously disordered solid</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL066232</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>19th century ; aftershock ; Aftershocks ; Crusts ; data fitting ; Decay rate ; Decomposition ; Earthquakes ; Geophysics ; Mathematical models ; meta-analysis ; Omori law ; Power law ; Seismic activity ; Statistical methods ; stretched exponential ; Trends</subject><ispartof>Geophysical research letters, 2015-11, Vol.42 (22), p.9726-9732</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5845-a56f66abc0ca7e1488619d3e5cfb1b5eb68448200c80d8209677bdad21f273c3</citedby><cites>FETCH-LOGICAL-a5845-a56f66abc0ca7e1488619d3e5cfb1b5eb68448200c80d8209677bdad21f273c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL066232$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL066232$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,11497,27907,27908,45557,45558,46392,46451,46816,46875</link.rule.ids></links><search><creatorcontrib>Mignan, A.</creatorcontrib><title>Modeling aftershocks as a stretched exponential relaxation</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After reviewing the aftershock models published from the late nineteenth century until today, I solely compare the power law, pure exponential and stretched exponential expressions defined in their simplest forms. By applying statistical methods recommended recently in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest‐neighbor, second‐order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simple relaxation process, in accordance with most other relaxation processes observed in Nature.
Key Points
Aftershocks are shown to follow a stretched exponential temporal decay instead of a power law
This trend is observed for aftershock sequences defined from three different declustering techniques
A stretched exponential law suggests that the crust behaves as a homogeneously disordered solid</description><subject>19th century</subject><subject>aftershock</subject><subject>Aftershocks</subject><subject>Crusts</subject><subject>data fitting</subject><subject>Decay rate</subject><subject>Decomposition</subject><subject>Earthquakes</subject><subject>Geophysics</subject><subject>Mathematical models</subject><subject>meta-analysis</subject><subject>Omori law</subject><subject>Power law</subject><subject>Seismic activity</subject><subject>Statistical methods</subject><subject>stretched exponential</subject><subject>Trends</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0EtLxDAQAOAgCq6Pmz-g4MWDq5OkedSbLG4VVgWRFbyENJ1qtduuSRd3_72RFREPIgwzc_hmSIaQAwonFICdMqAin4CUjLMNMqBZmg41gNokA4As9kzJbbITwgsAcOB0QM6uuxKbun1KbNWjD8-dew2JjZGE3mPvnrFMcDnvWmz72jaJx8YubV937R7ZqmwTcP-r7pL78cX96HI4uc2vRueToRU6FTHLSkpbOHBWIU21ljQrOQpXFbQQWEidppoBOA1lrJlUqihtyWjFFHd8lxyt185997bA0JtZHRw2jW2xWwRDNWiuMqHEfyikWkQe6eEv-tItfBv_YaiSVLKM0TSq47VyvgvBY2Xmvp5ZvzIUzOfJzc-TR87W_L1ucPWnNfndRHApPx89XA_Vocfl95D1r0YqroR5uMnN9JFCPqZTM-UfTOOPEg</recordid><startdate>20151128</startdate><enddate>20151128</enddate><creator>Mignan, A.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20151128</creationdate><title>Modeling aftershocks as a stretched exponential relaxation</title><author>Mignan, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5845-a56f66abc0ca7e1488619d3e5cfb1b5eb68448200c80d8209677bdad21f273c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>19th century</topic><topic>aftershock</topic><topic>Aftershocks</topic><topic>Crusts</topic><topic>data fitting</topic><topic>Decay rate</topic><topic>Decomposition</topic><topic>Earthquakes</topic><topic>Geophysics</topic><topic>Mathematical models</topic><topic>meta-analysis</topic><topic>Omori law</topic><topic>Power law</topic><topic>Seismic activity</topic><topic>Statistical methods</topic><topic>stretched exponential</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mignan, A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mignan, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling aftershocks as a stretched exponential relaxation</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2015-11-28</date><risdate>2015</risdate><volume>42</volume><issue>22</issue><spage>9726</spage><epage>9732</epage><pages>9726-9732</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After reviewing the aftershock models published from the late nineteenth century until today, I solely compare the power law, pure exponential and stretched exponential expressions defined in their simplest forms. By applying statistical methods recommended recently in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest‐neighbor, second‐order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simple relaxation process, in accordance with most other relaxation processes observed in Nature.
Key Points
Aftershocks are shown to follow a stretched exponential temporal decay instead of a power law
This trend is observed for aftershock sequences defined from three different declustering techniques
A stretched exponential law suggests that the crust behaves as a homogeneously disordered solid</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GL066232</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2015-11, Vol.42 (22), p.9726-9732 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808379575 |
source | Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library |
subjects | 19th century aftershock Aftershocks Crusts data fitting Decay rate Decomposition Earthquakes Geophysics Mathematical models meta-analysis Omori law Power law Seismic activity Statistical methods stretched exponential Trends |
title | Modeling aftershocks as a stretched exponential relaxation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20aftershocks%20as%20a%20stretched%20exponential%20relaxation&rft.jtitle=Geophysical%20research%20letters&rft.au=Mignan,%20A.&rft.date=2015-11-28&rft.volume=42&rft.issue=22&rft.spage=9726&rft.epage=9732&rft.pages=9726-9732&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL066232&rft_dat=%3Cproquest_cross%3E3939335631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761629214&rft_id=info:pmid/&rfr_iscdi=true |