In situ measurements of an energetic wave event in the Arctic marginal ice zone

R/V Lance serendipitously encountered an energetic wave event around 77°N, 26°E on 2 May 2010. Onboard GPS records, interpreted as the surface wave signal, show the largest waves recorded in the Arctic region with ice cover. Comparing the measurements with a spectral wave model indicated three phase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2015-03, Vol.42 (6), p.1863-1870
Hauptverfasser: Collins, Clarence O., Rogers, W. Erick, Marchenko, Aleksey, Babanin, Alexander V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1870
container_issue 6
container_start_page 1863
container_title Geophysical research letters
container_volume 42
creator Collins, Clarence O.
Rogers, W. Erick
Marchenko, Aleksey
Babanin, Alexander V.
description R/V Lance serendipitously encountered an energetic wave event around 77°N, 26°E on 2 May 2010. Onboard GPS records, interpreted as the surface wave signal, show the largest waves recorded in the Arctic region with ice cover. Comparing the measurements with a spectral wave model indicated three phases of interaction: (1) wave blocking by ice, (2) strong attenuation of wave energy and fracturing of ice by wave forcing, and (3) uninhibited propagation of the peak waves and an extension of allowed waves to higher frequencies (above the peak). Wave properties during fracturing of ice cover indicated increased groupiness. Wave‐ice interaction presented binary behavior: there was zero transmission in unbroken ice and total transmission in fractured ice. The fractured ice front traveled at some fraction of the wave group speed. Findings do not motivate new dissipation schemes for wave models, though they do indicate the need for two‐way, wave‐ice coupling. Key Points Largest waves measured under ice cover in the Arctic High‐resolution, coupled wave‐ice models are required for accurate predictions Nonlinearly enhanced waves may lead to initial ice breakup
doi_str_mv 10.1002/2015GL063063
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808378876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3657160071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5478-a606463526cb52c650a544d73359527bc866c2a9e8adfec85ee1bef4db1dc5543</originalsourceid><addsrcrecordid>eNqF0c1Kw0AQAOBFFKzVmw-w4MWD1dnfbI6laBUCBdFz2G4mNSVN6m7SUp_eLfUgHioszMJ8zDAzhFwzuGcA_IEDU9MMtIjvhAxYKuXIACSnZACQxj9P9Dm5CGEJAAIEG5DZS0ND1fV0hTb0HlfYdIG2JbUNxQb9ArvK0a3dIMVNzNGqod0H0rF3-8TK-kXV2JpWDulX2-AlOSttHfDqJw7J-9Pj2-R5lM2mL5NxNnJKJmZkNWipheLazRV3WoFVUhaJECpVPJk7o7XjNkVjixKdUYhsjqUs5qxwSkkxJLeHumvffvYYunxVBYd1bRts-5AzA0YkxiT6f6qNMoxpzSO9-UOXbe_jfFGlDIyWINOjSifCMCXkvu3dQTnfhuCxzNe-ivva5Qzy_bny3-eKnB_4tqpxd9Tm09csLikO-A04rZLS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673815346</pqid></control><display><type>article</type><title>In situ measurements of an energetic wave event in the Arctic marginal ice zone</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Collins, Clarence O. ; Rogers, W. Erick ; Marchenko, Aleksey ; Babanin, Alexander V.</creator><creatorcontrib>Collins, Clarence O. ; Rogers, W. Erick ; Marchenko, Aleksey ; Babanin, Alexander V.</creatorcontrib><description>R/V Lance serendipitously encountered an energetic wave event around 77°N, 26°E on 2 May 2010. Onboard GPS records, interpreted as the surface wave signal, show the largest waves recorded in the Arctic region with ice cover. Comparing the measurements with a spectral wave model indicated three phases of interaction: (1) wave blocking by ice, (2) strong attenuation of wave energy and fracturing of ice by wave forcing, and (3) uninhibited propagation of the peak waves and an extension of allowed waves to higher frequencies (above the peak). Wave properties during fracturing of ice cover indicated increased groupiness. Wave‐ice interaction presented binary behavior: there was zero transmission in unbroken ice and total transmission in fractured ice. The fractured ice front traveled at some fraction of the wave group speed. Findings do not motivate new dissipation schemes for wave models, though they do indicate the need for two‐way, wave‐ice coupling. Key Points Largest waves measured under ice cover in the Arctic High‐resolution, coupled wave‐ice models are required for accurate predictions Nonlinearly enhanced waves may lead to initial ice breakup</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL063063</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Arctic ; Arctic zone ; Attenuation ; Coupling ; Crack propagation ; Dissipation ; Fractures ; Fracturing ; Geophysics ; Ice ; Ice cover ; Ice front ; Ice fronts ; In situ measurement ; Joining ; Lances ; Loads (forces) ; Mathematical models ; Onboard ; Phases ; Propagation ; Properties ; Records ; sea ice ; Spectra ; spectral wave model ; Surface water waves ; Surface waves ; swell ; Wave attenuation ; Wave energy ; Wave models ; Wave power ; Wave propagation ; Wave properties ; wave‐ice interaction ; wind waves ; Winter</subject><ispartof>Geophysical research letters, 2015-03, Vol.42 (6), p.1863-1870</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright Blackwell Publishing Ltd. Mar 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5478-a606463526cb52c650a544d73359527bc866c2a9e8adfec85ee1bef4db1dc5543</citedby><cites>FETCH-LOGICAL-c5478-a606463526cb52c650a544d73359527bc866c2a9e8adfec85ee1bef4db1dc5543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL063063$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL063063$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Collins, Clarence O.</creatorcontrib><creatorcontrib>Rogers, W. Erick</creatorcontrib><creatorcontrib>Marchenko, Aleksey</creatorcontrib><creatorcontrib>Babanin, Alexander V.</creatorcontrib><title>In situ measurements of an energetic wave event in the Arctic marginal ice zone</title><title>Geophysical research letters</title><description>R/V Lance serendipitously encountered an energetic wave event around 77°N, 26°E on 2 May 2010. Onboard GPS records, interpreted as the surface wave signal, show the largest waves recorded in the Arctic region with ice cover. Comparing the measurements with a spectral wave model indicated three phases of interaction: (1) wave blocking by ice, (2) strong attenuation of wave energy and fracturing of ice by wave forcing, and (3) uninhibited propagation of the peak waves and an extension of allowed waves to higher frequencies (above the peak). Wave properties during fracturing of ice cover indicated increased groupiness. Wave‐ice interaction presented binary behavior: there was zero transmission in unbroken ice and total transmission in fractured ice. The fractured ice front traveled at some fraction of the wave group speed. Findings do not motivate new dissipation schemes for wave models, though they do indicate the need for two‐way, wave‐ice coupling. Key Points Largest waves measured under ice cover in the Arctic High‐resolution, coupled wave‐ice models are required for accurate predictions Nonlinearly enhanced waves may lead to initial ice breakup</description><subject>Arctic</subject><subject>Arctic zone</subject><subject>Attenuation</subject><subject>Coupling</subject><subject>Crack propagation</subject><subject>Dissipation</subject><subject>Fractures</subject><subject>Fracturing</subject><subject>Geophysics</subject><subject>Ice</subject><subject>Ice cover</subject><subject>Ice front</subject><subject>Ice fronts</subject><subject>In situ measurement</subject><subject>Joining</subject><subject>Lances</subject><subject>Loads (forces)</subject><subject>Mathematical models</subject><subject>Onboard</subject><subject>Phases</subject><subject>Propagation</subject><subject>Properties</subject><subject>Records</subject><subject>sea ice</subject><subject>Spectra</subject><subject>spectral wave model</subject><subject>Surface water waves</subject><subject>Surface waves</subject><subject>swell</subject><subject>Wave attenuation</subject><subject>Wave energy</subject><subject>Wave models</subject><subject>Wave power</subject><subject>Wave propagation</subject><subject>Wave properties</subject><subject>wave‐ice interaction</subject><subject>wind waves</subject><subject>Winter</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqF0c1Kw0AQAOBFFKzVmw-w4MWD1dnfbI6laBUCBdFz2G4mNSVN6m7SUp_eLfUgHioszMJ8zDAzhFwzuGcA_IEDU9MMtIjvhAxYKuXIACSnZACQxj9P9Dm5CGEJAAIEG5DZS0ND1fV0hTb0HlfYdIG2JbUNxQb9ArvK0a3dIMVNzNGqod0H0rF3-8TK-kXV2JpWDulX2-AlOSttHfDqJw7J-9Pj2-R5lM2mL5NxNnJKJmZkNWipheLazRV3WoFVUhaJECpVPJk7o7XjNkVjixKdUYhsjqUs5qxwSkkxJLeHumvffvYYunxVBYd1bRts-5AzA0YkxiT6f6qNMoxpzSO9-UOXbe_jfFGlDIyWINOjSifCMCXkvu3dQTnfhuCxzNe-ivva5Qzy_bny3-eKnB_4tqpxd9Tm09csLikO-A04rZLS</recordid><startdate>20150328</startdate><enddate>20150328</enddate><creator>Collins, Clarence O.</creator><creator>Rogers, W. Erick</creator><creator>Marchenko, Aleksey</creator><creator>Babanin, Alexander V.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20150328</creationdate><title>In situ measurements of an energetic wave event in the Arctic marginal ice zone</title><author>Collins, Clarence O. ; Rogers, W. Erick ; Marchenko, Aleksey ; Babanin, Alexander V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5478-a606463526cb52c650a544d73359527bc866c2a9e8adfec85ee1bef4db1dc5543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arctic</topic><topic>Arctic zone</topic><topic>Attenuation</topic><topic>Coupling</topic><topic>Crack propagation</topic><topic>Dissipation</topic><topic>Fractures</topic><topic>Fracturing</topic><topic>Geophysics</topic><topic>Ice</topic><topic>Ice cover</topic><topic>Ice front</topic><topic>Ice fronts</topic><topic>In situ measurement</topic><topic>Joining</topic><topic>Lances</topic><topic>Loads (forces)</topic><topic>Mathematical models</topic><topic>Onboard</topic><topic>Phases</topic><topic>Propagation</topic><topic>Properties</topic><topic>Records</topic><topic>sea ice</topic><topic>Spectra</topic><topic>spectral wave model</topic><topic>Surface water waves</topic><topic>Surface waves</topic><topic>swell</topic><topic>Wave attenuation</topic><topic>Wave energy</topic><topic>Wave models</topic><topic>Wave power</topic><topic>Wave propagation</topic><topic>Wave properties</topic><topic>wave‐ice interaction</topic><topic>wind waves</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collins, Clarence O.</creatorcontrib><creatorcontrib>Rogers, W. Erick</creatorcontrib><creatorcontrib>Marchenko, Aleksey</creatorcontrib><creatorcontrib>Babanin, Alexander V.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collins, Clarence O.</au><au>Rogers, W. Erick</au><au>Marchenko, Aleksey</au><au>Babanin, Alexander V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ measurements of an energetic wave event in the Arctic marginal ice zone</atitle><jtitle>Geophysical research letters</jtitle><date>2015-03-28</date><risdate>2015</risdate><volume>42</volume><issue>6</issue><spage>1863</spage><epage>1870</epage><pages>1863-1870</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>R/V Lance serendipitously encountered an energetic wave event around 77°N, 26°E on 2 May 2010. Onboard GPS records, interpreted as the surface wave signal, show the largest waves recorded in the Arctic region with ice cover. Comparing the measurements with a spectral wave model indicated three phases of interaction: (1) wave blocking by ice, (2) strong attenuation of wave energy and fracturing of ice by wave forcing, and (3) uninhibited propagation of the peak waves and an extension of allowed waves to higher frequencies (above the peak). Wave properties during fracturing of ice cover indicated increased groupiness. Wave‐ice interaction presented binary behavior: there was zero transmission in unbroken ice and total transmission in fractured ice. The fractured ice front traveled at some fraction of the wave group speed. Findings do not motivate new dissipation schemes for wave models, though they do indicate the need for two‐way, wave‐ice coupling. Key Points Largest waves measured under ice cover in the Arctic High‐resolution, coupled wave‐ice models are required for accurate predictions Nonlinearly enhanced waves may lead to initial ice breakup</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2015GL063063</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2015-03, Vol.42 (6), p.1863-1870
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1808378876
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Arctic
Arctic zone
Attenuation
Coupling
Crack propagation
Dissipation
Fractures
Fracturing
Geophysics
Ice
Ice cover
Ice front
Ice fronts
In situ measurement
Joining
Lances
Loads (forces)
Mathematical models
Onboard
Phases
Propagation
Properties
Records
sea ice
Spectra
spectral wave model
Surface water waves
Surface waves
swell
Wave attenuation
Wave energy
Wave models
Wave power
Wave propagation
Wave properties
wave‐ice interaction
wind waves
Winter
title In situ measurements of an energetic wave event in the Arctic marginal ice zone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20measurements%20of%20an%20energetic%20wave%20event%20in%20the%20Arctic%20marginal%20ice%20zone&rft.jtitle=Geophysical%20research%20letters&rft.au=Collins,%20Clarence%20O.&rft.date=2015-03-28&rft.volume=42&rft.issue=6&rft.spage=1863&rft.epage=1870&rft.pages=1863-1870&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL063063&rft_dat=%3Cproquest_cross%3E3657160071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673815346&rft_id=info:pmid/&rfr_iscdi=true