In situ measurements of an energetic wave event in the Arctic marginal ice zone
R/V Lance serendipitously encountered an energetic wave event around 77°N, 26°E on 2 May 2010. Onboard GPS records, interpreted as the surface wave signal, show the largest waves recorded in the Arctic region with ice cover. Comparing the measurements with a spectral wave model indicated three phase...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2015-03, Vol.42 (6), p.1863-1870 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1870 |
---|---|
container_issue | 6 |
container_start_page | 1863 |
container_title | Geophysical research letters |
container_volume | 42 |
creator | Collins, Clarence O. Rogers, W. Erick Marchenko, Aleksey Babanin, Alexander V. |
description | R/V Lance serendipitously encountered an energetic wave event around 77°N, 26°E on 2 May 2010. Onboard GPS records, interpreted as the surface wave signal, show the largest waves recorded in the Arctic region with ice cover. Comparing the measurements with a spectral wave model indicated three phases of interaction: (1) wave blocking by ice, (2) strong attenuation of wave energy and fracturing of ice by wave forcing, and (3) uninhibited propagation of the peak waves and an extension of allowed waves to higher frequencies (above the peak). Wave properties during fracturing of ice cover indicated increased groupiness. Wave‐ice interaction presented binary behavior: there was zero transmission in unbroken ice and total transmission in fractured ice. The fractured ice front traveled at some fraction of the wave group speed. Findings do not motivate new dissipation schemes for wave models, though they do indicate the need for two‐way, wave‐ice coupling.
Key Points
Largest waves measured under ice cover in the Arctic
High‐resolution, coupled wave‐ice models are required for accurate predictions
Nonlinearly enhanced waves may lead to initial ice breakup |
doi_str_mv | 10.1002/2015GL063063 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808378876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3657160071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5478-a606463526cb52c650a544d73359527bc866c2a9e8adfec85ee1bef4db1dc5543</originalsourceid><addsrcrecordid>eNqF0c1Kw0AQAOBFFKzVmw-w4MWD1dnfbI6laBUCBdFz2G4mNSVN6m7SUp_eLfUgHioszMJ8zDAzhFwzuGcA_IEDU9MMtIjvhAxYKuXIACSnZACQxj9P9Dm5CGEJAAIEG5DZS0ND1fV0hTb0HlfYdIG2JbUNxQb9ArvK0a3dIMVNzNGqod0H0rF3-8TK-kXV2JpWDulX2-AlOSttHfDqJw7J-9Pj2-R5lM2mL5NxNnJKJmZkNWipheLazRV3WoFVUhaJECpVPJk7o7XjNkVjixKdUYhsjqUs5qxwSkkxJLeHumvffvYYunxVBYd1bRts-5AzA0YkxiT6f6qNMoxpzSO9-UOXbe_jfFGlDIyWINOjSifCMCXkvu3dQTnfhuCxzNe-ivva5Qzy_bny3-eKnB_4tqpxd9Tm09csLikO-A04rZLS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673815346</pqid></control><display><type>article</type><title>In situ measurements of an energetic wave event in the Arctic marginal ice zone</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Collins, Clarence O. ; Rogers, W. Erick ; Marchenko, Aleksey ; Babanin, Alexander V.</creator><creatorcontrib>Collins, Clarence O. ; Rogers, W. Erick ; Marchenko, Aleksey ; Babanin, Alexander V.</creatorcontrib><description>R/V Lance serendipitously encountered an energetic wave event around 77°N, 26°E on 2 May 2010. Onboard GPS records, interpreted as the surface wave signal, show the largest waves recorded in the Arctic region with ice cover. Comparing the measurements with a spectral wave model indicated three phases of interaction: (1) wave blocking by ice, (2) strong attenuation of wave energy and fracturing of ice by wave forcing, and (3) uninhibited propagation of the peak waves and an extension of allowed waves to higher frequencies (above the peak). Wave properties during fracturing of ice cover indicated increased groupiness. Wave‐ice interaction presented binary behavior: there was zero transmission in unbroken ice and total transmission in fractured ice. The fractured ice front traveled at some fraction of the wave group speed. Findings do not motivate new dissipation schemes for wave models, though they do indicate the need for two‐way, wave‐ice coupling.
Key Points
Largest waves measured under ice cover in the Arctic
High‐resolution, coupled wave‐ice models are required for accurate predictions
Nonlinearly enhanced waves may lead to initial ice breakup</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL063063</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Arctic ; Arctic zone ; Attenuation ; Coupling ; Crack propagation ; Dissipation ; Fractures ; Fracturing ; Geophysics ; Ice ; Ice cover ; Ice front ; Ice fronts ; In situ measurement ; Joining ; Lances ; Loads (forces) ; Mathematical models ; Onboard ; Phases ; Propagation ; Properties ; Records ; sea ice ; Spectra ; spectral wave model ; Surface water waves ; Surface waves ; swell ; Wave attenuation ; Wave energy ; Wave models ; Wave power ; Wave propagation ; Wave properties ; wave‐ice interaction ; wind waves ; Winter</subject><ispartof>Geophysical research letters, 2015-03, Vol.42 (6), p.1863-1870</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright Blackwell Publishing Ltd. Mar 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5478-a606463526cb52c650a544d73359527bc866c2a9e8adfec85ee1bef4db1dc5543</citedby><cites>FETCH-LOGICAL-c5478-a606463526cb52c650a544d73359527bc866c2a9e8adfec85ee1bef4db1dc5543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL063063$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL063063$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Collins, Clarence O.</creatorcontrib><creatorcontrib>Rogers, W. Erick</creatorcontrib><creatorcontrib>Marchenko, Aleksey</creatorcontrib><creatorcontrib>Babanin, Alexander V.</creatorcontrib><title>In situ measurements of an energetic wave event in the Arctic marginal ice zone</title><title>Geophysical research letters</title><description>R/V Lance serendipitously encountered an energetic wave event around 77°N, 26°E on 2 May 2010. Onboard GPS records, interpreted as the surface wave signal, show the largest waves recorded in the Arctic region with ice cover. Comparing the measurements with a spectral wave model indicated three phases of interaction: (1) wave blocking by ice, (2) strong attenuation of wave energy and fracturing of ice by wave forcing, and (3) uninhibited propagation of the peak waves and an extension of allowed waves to higher frequencies (above the peak). Wave properties during fracturing of ice cover indicated increased groupiness. Wave‐ice interaction presented binary behavior: there was zero transmission in unbroken ice and total transmission in fractured ice. The fractured ice front traveled at some fraction of the wave group speed. Findings do not motivate new dissipation schemes for wave models, though they do indicate the need for two‐way, wave‐ice coupling.
Key Points
Largest waves measured under ice cover in the Arctic
High‐resolution, coupled wave‐ice models are required for accurate predictions
Nonlinearly enhanced waves may lead to initial ice breakup</description><subject>Arctic</subject><subject>Arctic zone</subject><subject>Attenuation</subject><subject>Coupling</subject><subject>Crack propagation</subject><subject>Dissipation</subject><subject>Fractures</subject><subject>Fracturing</subject><subject>Geophysics</subject><subject>Ice</subject><subject>Ice cover</subject><subject>Ice front</subject><subject>Ice fronts</subject><subject>In situ measurement</subject><subject>Joining</subject><subject>Lances</subject><subject>Loads (forces)</subject><subject>Mathematical models</subject><subject>Onboard</subject><subject>Phases</subject><subject>Propagation</subject><subject>Properties</subject><subject>Records</subject><subject>sea ice</subject><subject>Spectra</subject><subject>spectral wave model</subject><subject>Surface water waves</subject><subject>Surface waves</subject><subject>swell</subject><subject>Wave attenuation</subject><subject>Wave energy</subject><subject>Wave models</subject><subject>Wave power</subject><subject>Wave propagation</subject><subject>Wave properties</subject><subject>wave‐ice interaction</subject><subject>wind waves</subject><subject>Winter</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqF0c1Kw0AQAOBFFKzVmw-w4MWD1dnfbI6laBUCBdFz2G4mNSVN6m7SUp_eLfUgHioszMJ8zDAzhFwzuGcA_IEDU9MMtIjvhAxYKuXIACSnZACQxj9P9Dm5CGEJAAIEG5DZS0ND1fV0hTb0HlfYdIG2JbUNxQb9ArvK0a3dIMVNzNGqod0H0rF3-8TK-kXV2JpWDulX2-AlOSttHfDqJw7J-9Pj2-R5lM2mL5NxNnJKJmZkNWipheLazRV3WoFVUhaJECpVPJk7o7XjNkVjixKdUYhsjqUs5qxwSkkxJLeHumvffvYYunxVBYd1bRts-5AzA0YkxiT6f6qNMoxpzSO9-UOXbe_jfFGlDIyWINOjSifCMCXkvu3dQTnfhuCxzNe-ivva5Qzy_bny3-eKnB_4tqpxd9Tm09csLikO-A04rZLS</recordid><startdate>20150328</startdate><enddate>20150328</enddate><creator>Collins, Clarence O.</creator><creator>Rogers, W. Erick</creator><creator>Marchenko, Aleksey</creator><creator>Babanin, Alexander V.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20150328</creationdate><title>In situ measurements of an energetic wave event in the Arctic marginal ice zone</title><author>Collins, Clarence O. ; Rogers, W. Erick ; Marchenko, Aleksey ; Babanin, Alexander V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5478-a606463526cb52c650a544d73359527bc866c2a9e8adfec85ee1bef4db1dc5543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arctic</topic><topic>Arctic zone</topic><topic>Attenuation</topic><topic>Coupling</topic><topic>Crack propagation</topic><topic>Dissipation</topic><topic>Fractures</topic><topic>Fracturing</topic><topic>Geophysics</topic><topic>Ice</topic><topic>Ice cover</topic><topic>Ice front</topic><topic>Ice fronts</topic><topic>In situ measurement</topic><topic>Joining</topic><topic>Lances</topic><topic>Loads (forces)</topic><topic>Mathematical models</topic><topic>Onboard</topic><topic>Phases</topic><topic>Propagation</topic><topic>Properties</topic><topic>Records</topic><topic>sea ice</topic><topic>Spectra</topic><topic>spectral wave model</topic><topic>Surface water waves</topic><topic>Surface waves</topic><topic>swell</topic><topic>Wave attenuation</topic><topic>Wave energy</topic><topic>Wave models</topic><topic>Wave power</topic><topic>Wave propagation</topic><topic>Wave properties</topic><topic>wave‐ice interaction</topic><topic>wind waves</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collins, Clarence O.</creatorcontrib><creatorcontrib>Rogers, W. Erick</creatorcontrib><creatorcontrib>Marchenko, Aleksey</creatorcontrib><creatorcontrib>Babanin, Alexander V.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collins, Clarence O.</au><au>Rogers, W. Erick</au><au>Marchenko, Aleksey</au><au>Babanin, Alexander V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ measurements of an energetic wave event in the Arctic marginal ice zone</atitle><jtitle>Geophysical research letters</jtitle><date>2015-03-28</date><risdate>2015</risdate><volume>42</volume><issue>6</issue><spage>1863</spage><epage>1870</epage><pages>1863-1870</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>R/V Lance serendipitously encountered an energetic wave event around 77°N, 26°E on 2 May 2010. Onboard GPS records, interpreted as the surface wave signal, show the largest waves recorded in the Arctic region with ice cover. Comparing the measurements with a spectral wave model indicated three phases of interaction: (1) wave blocking by ice, (2) strong attenuation of wave energy and fracturing of ice by wave forcing, and (3) uninhibited propagation of the peak waves and an extension of allowed waves to higher frequencies (above the peak). Wave properties during fracturing of ice cover indicated increased groupiness. Wave‐ice interaction presented binary behavior: there was zero transmission in unbroken ice and total transmission in fractured ice. The fractured ice front traveled at some fraction of the wave group speed. Findings do not motivate new dissipation schemes for wave models, though they do indicate the need for two‐way, wave‐ice coupling.
Key Points
Largest waves measured under ice cover in the Arctic
High‐resolution, coupled wave‐ice models are required for accurate predictions
Nonlinearly enhanced waves may lead to initial ice breakup</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2015GL063063</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2015-03, Vol.42 (6), p.1863-1870 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808378876 |
source | Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | Arctic Arctic zone Attenuation Coupling Crack propagation Dissipation Fractures Fracturing Geophysics Ice Ice cover Ice front Ice fronts In situ measurement Joining Lances Loads (forces) Mathematical models Onboard Phases Propagation Properties Records sea ice Spectra spectral wave model Surface water waves Surface waves swell Wave attenuation Wave energy Wave models Wave power Wave propagation Wave properties wave‐ice interaction wind waves Winter |
title | In situ measurements of an energetic wave event in the Arctic marginal ice zone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20measurements%20of%20an%20energetic%20wave%20event%20in%20the%20Arctic%20marginal%20ice%20zone&rft.jtitle=Geophysical%20research%20letters&rft.au=Collins,%20Clarence%20O.&rft.date=2015-03-28&rft.volume=42&rft.issue=6&rft.spage=1863&rft.epage=1870&rft.pages=1863-1870&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL063063&rft_dat=%3Cproquest_cross%3E3657160071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673815346&rft_id=info:pmid/&rfr_iscdi=true |