Fault diagnosis using noise modeling and a new artificial immune system based algorithm
A new fault classification/diagnosis method based on artificial immune system(AIS) algorithms for the structural systems is proposed. In order to improve the accuracy of the proposed method, i.e., higher success rate, Gaussian and non-Gaussian noise generating models are applied to simulate environm...
Gespeichert in:
Veröffentlicht in: | Earthquake Engineering and Engineering Vibration 2015-12, Vol.14 (4), p.725-741 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 741 |
---|---|
container_issue | 4 |
container_start_page | 725 |
container_title | Earthquake Engineering and Engineering Vibration |
container_volume | 14 |
creator | Abbasi, Farshid Mojtahedi, Alireza Ettefagh, Mir Mohammad |
description | A new fault classification/diagnosis method based on artificial immune system(AIS) algorithms for the structural systems is proposed. In order to improve the accuracy of the proposed method, i.e., higher success rate, Gaussian and non-Gaussian noise generating models are applied to simulate environmental noise. The identification of noise model, known as training process, is based on the estimation of the noise model parameters by genetic algorithms(GA) utilizing real experimental features. The proposed fault classification/diagnosis algorithm is applied to the noise contaminated features. Then, the results are compared to that obtained without noise modeling. The performance of the proposed method is examined using three laboratory case studies in two healthy and damaged conditions. Finally three different types of noise models are studied and it is shown experimentally that the proposed algorithm with non-Gaussian noise modeling leads to more accurate clustering of memory cells as the major part of the fault classification procedure. |
doi_str_mv | 10.1007/s11803-015-0057-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808377335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>69696986504849534852484949</cqvip_id><sourcerecordid>1808377335</sourcerecordid><originalsourceid>FETCH-LOGICAL-a449t-dbaf0f3bee3c975762ee87ce7308f438db0012d5282a0699a3f10a284d06641a3</originalsourceid><addsrcrecordid>eNqFkU9LHjEQxkOxUH3bD9BboJdetk528vdYRG1B6KXS3kLe3ewa2U002UX89mZ5pRQPyhxmAr9nJjMPIZ8ZfGMA6rQwpgEbYKIBEKpR78gxMwYbAfj3qNZSsQal5B_ISSm3AJK3KI_Jnwu3TgvtgxtjKqHQtYQ40phC8XROvZ-2p4s9dTT6B-ryEobQBTfRMM9r9LQ8lsXPdO-Kr9A0phyWm_kjeT-4qfhPz3lHri_Of5_9aK5-Xf48-37VOM7N0vR7N8CAe--xM0oo2XqvVecVgh446n4PwNpetLp1II1xODBwreY91F2Ywx35euh7l9P96sti51A6P00u-rQWW6-iUSlE8TaqlAbgUK-2I19eoLdpzbEuUiluhBEKZaXYgepyKiX7wd7lMLv8aBnYzRV7cMVWV-zmilVV0x40pbJx9Pm_zq-I8HnQTYrjfdX9myTNFloK4Lp-DLkW7VZxg08mWp2L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1749595736</pqid></control><display><type>article</type><title>Fault diagnosis using noise modeling and a new artificial immune system based algorithm</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Abbasi, Farshid ; Mojtahedi, Alireza ; Ettefagh, Mir Mohammad</creator><creatorcontrib>Abbasi, Farshid ; Mojtahedi, Alireza ; Ettefagh, Mir Mohammad</creatorcontrib><description>A new fault classification/diagnosis method based on artificial immune system(AIS) algorithms for the structural systems is proposed. In order to improve the accuracy of the proposed method, i.e., higher success rate, Gaussian and non-Gaussian noise generating models are applied to simulate environmental noise. The identification of noise model, known as training process, is based on the estimation of the noise model parameters by genetic algorithms(GA) utilizing real experimental features. The proposed fault classification/diagnosis algorithm is applied to the noise contaminated features. Then, the results are compared to that obtained without noise modeling. The performance of the proposed method is examined using three laboratory case studies in two healthy and damaged conditions. Finally three different types of noise models are studied and it is shown experimentally that the proposed algorithm with non-Gaussian noise modeling leads to more accurate clustering of memory cells as the major part of the fault classification procedure.</description><identifier>ISSN: 1671-3664</identifier><identifier>EISSN: 1993-503X</identifier><identifier>DOI: 10.1007/s11803-015-0057-7</identifier><language>eng</language><publisher>Harbin: Institute of Engineering Mechanics, China Earthquake Administration</publisher><subject>Algorithms ; Artificial intelligence ; Civil Engineering ; Classification ; Control ; Diagnosis ; diagnosis;physical ; Dynamical Systems ; Earth and Environmental Science ; Earth Sciences ; fault ; Fault diagnosis ; Genetic algorithms ; Geotechnical Engineering & Applied Earth Sciences ; Immune system ; method;noise ; modeling ; models;modal ; Noise ; Non-Gaussian ; updating;AIS ; Vibration</subject><ispartof>Earthquake Engineering and Engineering Vibration, 2015-12, Vol.14 (4), p.725-741</ispartof><rights>Institute of Engineering Mechanics, China Earthquake Administration and Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a449t-dbaf0f3bee3c975762ee87ce7308f438db0012d5282a0699a3f10a284d06641a3</citedby><cites>FETCH-LOGICAL-a449t-dbaf0f3bee3c975762ee87ce7308f438db0012d5282a0699a3f10a284d06641a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86651X/86651X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11803-015-0057-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11803-015-0057-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Abbasi, Farshid</creatorcontrib><creatorcontrib>Mojtahedi, Alireza</creatorcontrib><creatorcontrib>Ettefagh, Mir Mohammad</creatorcontrib><title>Fault diagnosis using noise modeling and a new artificial immune system based algorithm</title><title>Earthquake Engineering and Engineering Vibration</title><addtitle>Earthq. Eng. Eng. Vib</addtitle><addtitle>Earthquake Engineering and Engineering Vibration</addtitle><description>A new fault classification/diagnosis method based on artificial immune system(AIS) algorithms for the structural systems is proposed. In order to improve the accuracy of the proposed method, i.e., higher success rate, Gaussian and non-Gaussian noise generating models are applied to simulate environmental noise. The identification of noise model, known as training process, is based on the estimation of the noise model parameters by genetic algorithms(GA) utilizing real experimental features. The proposed fault classification/diagnosis algorithm is applied to the noise contaminated features. Then, the results are compared to that obtained without noise modeling. The performance of the proposed method is examined using three laboratory case studies in two healthy and damaged conditions. Finally three different types of noise models are studied and it is shown experimentally that the proposed algorithm with non-Gaussian noise modeling leads to more accurate clustering of memory cells as the major part of the fault classification procedure.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Civil Engineering</subject><subject>Classification</subject><subject>Control</subject><subject>Diagnosis</subject><subject>diagnosis;physical</subject><subject>Dynamical Systems</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>fault</subject><subject>Fault diagnosis</subject><subject>Genetic algorithms</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Immune system</subject><subject>method;noise</subject><subject>modeling</subject><subject>models;modal</subject><subject>Noise</subject><subject>Non-Gaussian</subject><subject>updating;AIS</subject><subject>Vibration</subject><issn>1671-3664</issn><issn>1993-503X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU9LHjEQxkOxUH3bD9BboJdetk528vdYRG1B6KXS3kLe3ewa2U002UX89mZ5pRQPyhxmAr9nJjMPIZ8ZfGMA6rQwpgEbYKIBEKpR78gxMwYbAfj3qNZSsQal5B_ISSm3AJK3KI_Jnwu3TgvtgxtjKqHQtYQ40phC8XROvZ-2p4s9dTT6B-ryEobQBTfRMM9r9LQ8lsXPdO-Kr9A0phyWm_kjeT-4qfhPz3lHri_Of5_9aK5-Xf48-37VOM7N0vR7N8CAe--xM0oo2XqvVecVgh446n4PwNpetLp1II1xODBwreY91F2Ywx35euh7l9P96sti51A6P00u-rQWW6-iUSlE8TaqlAbgUK-2I19eoLdpzbEuUiluhBEKZaXYgepyKiX7wd7lMLv8aBnYzRV7cMVWV-zmilVV0x40pbJx9Pm_zq-I8HnQTYrjfdX9myTNFloK4Lp-DLkW7VZxg08mWp2L</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Abbasi, Farshid</creator><creator>Mojtahedi, Alireza</creator><creator>Ettefagh, Mir Mohammad</creator><general>Institute of Engineering Mechanics, China Earthquake Administration</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7SM</scope><scope>7UA</scope></search><sort><creationdate>20151201</creationdate><title>Fault diagnosis using noise modeling and a new artificial immune system based algorithm</title><author>Abbasi, Farshid ; Mojtahedi, Alireza ; Ettefagh, Mir Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a449t-dbaf0f3bee3c975762ee87ce7308f438db0012d5282a0699a3f10a284d06641a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Civil Engineering</topic><topic>Classification</topic><topic>Control</topic><topic>Diagnosis</topic><topic>diagnosis;physical</topic><topic>Dynamical Systems</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>fault</topic><topic>Fault diagnosis</topic><topic>Genetic algorithms</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Immune system</topic><topic>method;noise</topic><topic>modeling</topic><topic>models;modal</topic><topic>Noise</topic><topic>Non-Gaussian</topic><topic>updating;AIS</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbasi, Farshid</creatorcontrib><creatorcontrib>Mojtahedi, Alireza</creatorcontrib><creatorcontrib>Ettefagh, Mir Mohammad</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><collection>Water Resources Abstracts</collection><jtitle>Earthquake Engineering and Engineering Vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbasi, Farshid</au><au>Mojtahedi, Alireza</au><au>Ettefagh, Mir Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault diagnosis using noise modeling and a new artificial immune system based algorithm</atitle><jtitle>Earthquake Engineering and Engineering Vibration</jtitle><stitle>Earthq. Eng. Eng. Vib</stitle><addtitle>Earthquake Engineering and Engineering Vibration</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>14</volume><issue>4</issue><spage>725</spage><epage>741</epage><pages>725-741</pages><issn>1671-3664</issn><eissn>1993-503X</eissn><abstract>A new fault classification/diagnosis method based on artificial immune system(AIS) algorithms for the structural systems is proposed. In order to improve the accuracy of the proposed method, i.e., higher success rate, Gaussian and non-Gaussian noise generating models are applied to simulate environmental noise. The identification of noise model, known as training process, is based on the estimation of the noise model parameters by genetic algorithms(GA) utilizing real experimental features. The proposed fault classification/diagnosis algorithm is applied to the noise contaminated features. Then, the results are compared to that obtained without noise modeling. The performance of the proposed method is examined using three laboratory case studies in two healthy and damaged conditions. Finally three different types of noise models are studied and it is shown experimentally that the proposed algorithm with non-Gaussian noise modeling leads to more accurate clustering of memory cells as the major part of the fault classification procedure.</abstract><cop>Harbin</cop><pub>Institute of Engineering Mechanics, China Earthquake Administration</pub><doi>10.1007/s11803-015-0057-7</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1671-3664 |
ispartof | Earthquake Engineering and Engineering Vibration, 2015-12, Vol.14 (4), p.725-741 |
issn | 1671-3664 1993-503X |
language | eng |
recordid | cdi_proquest_miscellaneous_1808377335 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Algorithms Artificial intelligence Civil Engineering Classification Control Diagnosis diagnosis physical Dynamical Systems Earth and Environmental Science Earth Sciences fault Fault diagnosis Genetic algorithms Geotechnical Engineering & Applied Earth Sciences Immune system method noise modeling models modal Noise Non-Gaussian updating AIS Vibration |
title | Fault diagnosis using noise modeling and a new artificial immune system based algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20diagnosis%20using%20noise%20modeling%20and%20a%20new%20artificial%20immune%20system%20based%20algorithm&rft.jtitle=Earthquake%20Engineering%20and%20Engineering%20Vibration&rft.au=Abbasi,%20Farshid&rft.date=2015-12-01&rft.volume=14&rft.issue=4&rft.spage=725&rft.epage=741&rft.pages=725-741&rft.issn=1671-3664&rft.eissn=1993-503X&rft_id=info:doi/10.1007/s11803-015-0057-7&rft_dat=%3Cproquest_cross%3E1808377335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1749595736&rft_id=info:pmid/&rft_cqvip_id=69696986504849534852484949&rfr_iscdi=true |