QSAR Prediction of Passive Permeability in the LLC-PK1 Cell Line: Trends in Molecular Properties and Cross-Prediction of Caco-2 Permeabilities

A QSAR model for predicting passive permeability (Papp) was derived from Papp values measured in the LLC‐PK1 cell line. The QSAR method and descriptor set that performed best in terms of cross‐validation was random forest with a combination of AP, DP, and MOE_2D descriptors. The QSAR model was used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular informatics 2012-04, Vol.31 (3-4), p.231-245
Hauptverfasser: Sherer, Edward C., Verras, Andreas, Madeira, Maria, Hagmann, William K., Sheridan, Robert P., Roberts, Drew, Bleasby, Kelly, Cornell, Wendy D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue 3-4
container_start_page 231
container_title Molecular informatics
container_volume 31
creator Sherer, Edward C.
Verras, Andreas
Madeira, Maria
Hagmann, William K.
Sheridan, Robert P.
Roberts, Drew
Bleasby, Kelly
Cornell, Wendy D.
description A QSAR model for predicting passive permeability (Papp) was derived from Papp values measured in the LLC‐PK1 cell line. The QSAR method and descriptor set that performed best in terms of cross‐validation was random forest with a combination of AP, DP, and MOE_2D descriptors. The QSAR model was used to predict the Caco‐2 cell permeability for 313 compounds described in the literature with good success. We find that passive permeability for different cell lines can be predicted with similar molecular properties and descriptors. It is shown that the variation in experimental measurements of Papp is smaller than the error in QSAR predictions indicating that predictions are not quantitatively perfect, although qualitatively useful. We get better predictions if the training set is large and diverse, rather than smaller and more internally consistent. This is because prediction accuracy falls off quickly with decreasing similarity to the training set and it is therefore better to have as large a training set as possible. While single physical parameters are not as good as a full QSAR model in predicting Papp, logD seems the most important parameter. Intermediate values of logD are associated with higher Papp.
doi_str_mv 10.1002/minf.201100157
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808374365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808374365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4497-5506b93761edf3e819a16517798d4c09d5ba05155574adf9a3f9019e9c33722c3</originalsourceid><addsrcrecordid>eNqFkU1PGzEQhq2KqiCaa4_IRy6b2uv12uaGFgKIDQ0fbY-W450Vhv0I9oY2f6K_GUehUXqqL-ORnvcdzbwIfaFkTAlJv7auq8cpobGhXHxAB1TmMqGC073tP2P7aBTCE4mPpbmQ6hPaT0UmBFHZAfpze396h2ceKmcH13e4r_HMhOBeAc_At2DmrnHDCrsOD4-Ay7JIZtcUF9A0uHQdnOAHD10V1sC0b8AuG-OjYb8APzgI2HQVLnwfQvLvlMLYPkl3h0T6M_pYmybA6L0eou-T84fiMim_XVwVp2Vis0yJhHOSzxUTOYWqZiCpMjTnVAglq8wSVfG5IZxyzkVmqloZVitCFSjLmEhTyw7R8cZ34fuXJYRBty7YuJPpoF8GTSWRLN4u5xEdb1C7XsJDrRfetcavNCV6HYNex6C3MUTB0bv3ct5CtcX_Hj0CagP8cg2s_mOnp1c3k13zZKN1YYDfW63xzzoXTHD98-ZC3_5Ql2oqz7Rkb-l3od4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808374365</pqid></control><display><type>article</type><title>QSAR Prediction of Passive Permeability in the LLC-PK1 Cell Line: Trends in Molecular Properties and Cross-Prediction of Caco-2 Permeabilities</title><source>Access via Wiley Online Library</source><creator>Sherer, Edward C. ; Verras, Andreas ; Madeira, Maria ; Hagmann, William K. ; Sheridan, Robert P. ; Roberts, Drew ; Bleasby, Kelly ; Cornell, Wendy D.</creator><creatorcontrib>Sherer, Edward C. ; Verras, Andreas ; Madeira, Maria ; Hagmann, William K. ; Sheridan, Robert P. ; Roberts, Drew ; Bleasby, Kelly ; Cornell, Wendy D.</creatorcontrib><description>A QSAR model for predicting passive permeability (Papp) was derived from Papp values measured in the LLC‐PK1 cell line. The QSAR method and descriptor set that performed best in terms of cross‐validation was random forest with a combination of AP, DP, and MOE_2D descriptors. The QSAR model was used to predict the Caco‐2 cell permeability for 313 compounds described in the literature with good success. We find that passive permeability for different cell lines can be predicted with similar molecular properties and descriptors. It is shown that the variation in experimental measurements of Papp is smaller than the error in QSAR predictions indicating that predictions are not quantitatively perfect, although qualitatively useful. We get better predictions if the training set is large and diverse, rather than smaller and more internally consistent. This is because prediction accuracy falls off quickly with decreasing similarity to the training set and it is therefore better to have as large a training set as possible. While single physical parameters are not as good as a full QSAR model in predicting Papp, logD seems the most important parameter. Intermediate values of logD are associated with higher Papp.</description><identifier>ISSN: 1868-1743</identifier><identifier>EISSN: 1868-1751</identifier><identifier>DOI: 10.1002/minf.201100157</identifier><identifier>PMID: 27477094</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>ADME ; Caco-2 ; Lipophilicity ; LLC-PK1 ; logD ; Molecular modeling ; Permeability ; QSAR ; Random forest</subject><ispartof>Molecular informatics, 2012-04, Vol.31 (3-4), p.231-245</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4497-5506b93761edf3e819a16517798d4c09d5ba05155574adf9a3f9019e9c33722c3</citedby><cites>FETCH-LOGICAL-c4497-5506b93761edf3e819a16517798d4c09d5ba05155574adf9a3f9019e9c33722c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fminf.201100157$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fminf.201100157$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27477094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sherer, Edward C.</creatorcontrib><creatorcontrib>Verras, Andreas</creatorcontrib><creatorcontrib>Madeira, Maria</creatorcontrib><creatorcontrib>Hagmann, William K.</creatorcontrib><creatorcontrib>Sheridan, Robert P.</creatorcontrib><creatorcontrib>Roberts, Drew</creatorcontrib><creatorcontrib>Bleasby, Kelly</creatorcontrib><creatorcontrib>Cornell, Wendy D.</creatorcontrib><title>QSAR Prediction of Passive Permeability in the LLC-PK1 Cell Line: Trends in Molecular Properties and Cross-Prediction of Caco-2 Permeabilities</title><title>Molecular informatics</title><addtitle>Mol. Inf</addtitle><description>A QSAR model for predicting passive permeability (Papp) was derived from Papp values measured in the LLC‐PK1 cell line. The QSAR method and descriptor set that performed best in terms of cross‐validation was random forest with a combination of AP, DP, and MOE_2D descriptors. The QSAR model was used to predict the Caco‐2 cell permeability for 313 compounds described in the literature with good success. We find that passive permeability for different cell lines can be predicted with similar molecular properties and descriptors. It is shown that the variation in experimental measurements of Papp is smaller than the error in QSAR predictions indicating that predictions are not quantitatively perfect, although qualitatively useful. We get better predictions if the training set is large and diverse, rather than smaller and more internally consistent. This is because prediction accuracy falls off quickly with decreasing similarity to the training set and it is therefore better to have as large a training set as possible. While single physical parameters are not as good as a full QSAR model in predicting Papp, logD seems the most important parameter. Intermediate values of logD are associated with higher Papp.</description><subject>ADME</subject><subject>Caco-2</subject><subject>Lipophilicity</subject><subject>LLC-PK1</subject><subject>logD</subject><subject>Molecular modeling</subject><subject>Permeability</subject><subject>QSAR</subject><subject>Random forest</subject><issn>1868-1743</issn><issn>1868-1751</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU1PGzEQhq2KqiCaa4_IRy6b2uv12uaGFgKIDQ0fbY-W450Vhv0I9oY2f6K_GUehUXqqL-ORnvcdzbwIfaFkTAlJv7auq8cpobGhXHxAB1TmMqGC073tP2P7aBTCE4mPpbmQ6hPaT0UmBFHZAfpze396h2ceKmcH13e4r_HMhOBeAc_At2DmrnHDCrsOD4-Ay7JIZtcUF9A0uHQdnOAHD10V1sC0b8AuG-OjYb8APzgI2HQVLnwfQvLvlMLYPkl3h0T6M_pYmybA6L0eou-T84fiMim_XVwVp2Vis0yJhHOSzxUTOYWqZiCpMjTnVAglq8wSVfG5IZxyzkVmqloZVitCFSjLmEhTyw7R8cZ34fuXJYRBty7YuJPpoF8GTSWRLN4u5xEdb1C7XsJDrRfetcavNCV6HYNex6C3MUTB0bv3ct5CtcX_Hj0CagP8cg2s_mOnp1c3k13zZKN1YYDfW63xzzoXTHD98-ZC3_5Ql2oqz7Rkb-l3od4</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Sherer, Edward C.</creator><creator>Verras, Andreas</creator><creator>Madeira, Maria</creator><creator>Hagmann, William K.</creator><creator>Sheridan, Robert P.</creator><creator>Roberts, Drew</creator><creator>Bleasby, Kelly</creator><creator>Cornell, Wendy D.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201204</creationdate><title>QSAR Prediction of Passive Permeability in the LLC-PK1 Cell Line: Trends in Molecular Properties and Cross-Prediction of Caco-2 Permeabilities</title><author>Sherer, Edward C. ; Verras, Andreas ; Madeira, Maria ; Hagmann, William K. ; Sheridan, Robert P. ; Roberts, Drew ; Bleasby, Kelly ; Cornell, Wendy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4497-5506b93761edf3e819a16517798d4c09d5ba05155574adf9a3f9019e9c33722c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ADME</topic><topic>Caco-2</topic><topic>Lipophilicity</topic><topic>LLC-PK1</topic><topic>logD</topic><topic>Molecular modeling</topic><topic>Permeability</topic><topic>QSAR</topic><topic>Random forest</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherer, Edward C.</creatorcontrib><creatorcontrib>Verras, Andreas</creatorcontrib><creatorcontrib>Madeira, Maria</creatorcontrib><creatorcontrib>Hagmann, William K.</creatorcontrib><creatorcontrib>Sheridan, Robert P.</creatorcontrib><creatorcontrib>Roberts, Drew</creatorcontrib><creatorcontrib>Bleasby, Kelly</creatorcontrib><creatorcontrib>Cornell, Wendy D.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sherer, Edward C.</au><au>Verras, Andreas</au><au>Madeira, Maria</au><au>Hagmann, William K.</au><au>Sheridan, Robert P.</au><au>Roberts, Drew</au><au>Bleasby, Kelly</au><au>Cornell, Wendy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QSAR Prediction of Passive Permeability in the LLC-PK1 Cell Line: Trends in Molecular Properties and Cross-Prediction of Caco-2 Permeabilities</atitle><jtitle>Molecular informatics</jtitle><addtitle>Mol. Inf</addtitle><date>2012-04</date><risdate>2012</risdate><volume>31</volume><issue>3-4</issue><spage>231</spage><epage>245</epage><pages>231-245</pages><issn>1868-1743</issn><eissn>1868-1751</eissn><abstract>A QSAR model for predicting passive permeability (Papp) was derived from Papp values measured in the LLC‐PK1 cell line. The QSAR method and descriptor set that performed best in terms of cross‐validation was random forest with a combination of AP, DP, and MOE_2D descriptors. The QSAR model was used to predict the Caco‐2 cell permeability for 313 compounds described in the literature with good success. We find that passive permeability for different cell lines can be predicted with similar molecular properties and descriptors. It is shown that the variation in experimental measurements of Papp is smaller than the error in QSAR predictions indicating that predictions are not quantitatively perfect, although qualitatively useful. We get better predictions if the training set is large and diverse, rather than smaller and more internally consistent. This is because prediction accuracy falls off quickly with decreasing similarity to the training set and it is therefore better to have as large a training set as possible. While single physical parameters are not as good as a full QSAR model in predicting Papp, logD seems the most important parameter. Intermediate values of logD are associated with higher Papp.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>27477094</pmid><doi>10.1002/minf.201100157</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-1743
ispartof Molecular informatics, 2012-04, Vol.31 (3-4), p.231-245
issn 1868-1743
1868-1751
language eng
recordid cdi_proquest_miscellaneous_1808374365
source Access via Wiley Online Library
subjects ADME
Caco-2
Lipophilicity
LLC-PK1
logD
Molecular modeling
Permeability
QSAR
Random forest
title QSAR Prediction of Passive Permeability in the LLC-PK1 Cell Line: Trends in Molecular Properties and Cross-Prediction of Caco-2 Permeabilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QSAR%20Prediction%20of%20Passive%20Permeability%20in%20the%20LLC-PK1%20Cell%20Line:%20Trends%20in%20Molecular%20Properties%20and%20Cross-Prediction%20of%20Caco-2%20Permeabilities&rft.jtitle=Molecular%20informatics&rft.au=Sherer,%20Edward%20C.&rft.date=2012-04&rft.volume=31&rft.issue=3-4&rft.spage=231&rft.epage=245&rft.pages=231-245&rft.issn=1868-1743&rft.eissn=1868-1751&rft_id=info:doi/10.1002/minf.201100157&rft_dat=%3Cproquest_cross%3E1808374365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808374365&rft_id=info:pmid/27477094&rfr_iscdi=true