QSAR Prediction of Passive Permeability in the LLC-PK1 Cell Line: Trends in Molecular Properties and Cross-Prediction of Caco-2 Permeabilities
A QSAR model for predicting passive permeability (Papp) was derived from Papp values measured in the LLC‐PK1 cell line. The QSAR method and descriptor set that performed best in terms of cross‐validation was random forest with a combination of AP, DP, and MOE_2D descriptors. The QSAR model was used...
Gespeichert in:
Veröffentlicht in: | Molecular informatics 2012-04, Vol.31 (3-4), p.231-245 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 245 |
---|---|
container_issue | 3-4 |
container_start_page | 231 |
container_title | Molecular informatics |
container_volume | 31 |
creator | Sherer, Edward C. Verras, Andreas Madeira, Maria Hagmann, William K. Sheridan, Robert P. Roberts, Drew Bleasby, Kelly Cornell, Wendy D. |
description | A QSAR model for predicting passive permeability (Papp) was derived from Papp values measured in the LLC‐PK1 cell line. The QSAR method and descriptor set that performed best in terms of cross‐validation was random forest with a combination of AP, DP, and MOE_2D descriptors. The QSAR model was used to predict the Caco‐2 cell permeability for 313 compounds described in the literature with good success. We find that passive permeability for different cell lines can be predicted with similar molecular properties and descriptors. It is shown that the variation in experimental measurements of Papp is smaller than the error in QSAR predictions indicating that predictions are not quantitatively perfect, although qualitatively useful. We get better predictions if the training set is large and diverse, rather than smaller and more internally consistent. This is because prediction accuracy falls off quickly with decreasing similarity to the training set and it is therefore better to have as large a training set as possible. While single physical parameters are not as good as a full QSAR model in predicting Papp, logD seems the most important parameter. Intermediate values of logD are associated with higher Papp. |
doi_str_mv | 10.1002/minf.201100157 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808374365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808374365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4497-5506b93761edf3e819a16517798d4c09d5ba05155574adf9a3f9019e9c33722c3</originalsourceid><addsrcrecordid>eNqFkU1PGzEQhq2KqiCaa4_IRy6b2uv12uaGFgKIDQ0fbY-W450Vhv0I9oY2f6K_GUehUXqqL-ORnvcdzbwIfaFkTAlJv7auq8cpobGhXHxAB1TmMqGC073tP2P7aBTCE4mPpbmQ6hPaT0UmBFHZAfpze396h2ceKmcH13e4r_HMhOBeAc_At2DmrnHDCrsOD4-Ay7JIZtcUF9A0uHQdnOAHD10V1sC0b8AuG-OjYb8APzgI2HQVLnwfQvLvlMLYPkl3h0T6M_pYmybA6L0eou-T84fiMim_XVwVp2Vis0yJhHOSzxUTOYWqZiCpMjTnVAglq8wSVfG5IZxyzkVmqloZVitCFSjLmEhTyw7R8cZ34fuXJYRBty7YuJPpoF8GTSWRLN4u5xEdb1C7XsJDrRfetcavNCV6HYNex6C3MUTB0bv3ct5CtcX_Hj0CagP8cg2s_mOnp1c3k13zZKN1YYDfW63xzzoXTHD98-ZC3_5Ql2oqz7Rkb-l3od4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808374365</pqid></control><display><type>article</type><title>QSAR Prediction of Passive Permeability in the LLC-PK1 Cell Line: Trends in Molecular Properties and Cross-Prediction of Caco-2 Permeabilities</title><source>Access via Wiley Online Library</source><creator>Sherer, Edward C. ; Verras, Andreas ; Madeira, Maria ; Hagmann, William K. ; Sheridan, Robert P. ; Roberts, Drew ; Bleasby, Kelly ; Cornell, Wendy D.</creator><creatorcontrib>Sherer, Edward C. ; Verras, Andreas ; Madeira, Maria ; Hagmann, William K. ; Sheridan, Robert P. ; Roberts, Drew ; Bleasby, Kelly ; Cornell, Wendy D.</creatorcontrib><description>A QSAR model for predicting passive permeability (Papp) was derived from Papp values measured in the LLC‐PK1 cell line. The QSAR method and descriptor set that performed best in terms of cross‐validation was random forest with a combination of AP, DP, and MOE_2D descriptors. The QSAR model was used to predict the Caco‐2 cell permeability for 313 compounds described in the literature with good success. We find that passive permeability for different cell lines can be predicted with similar molecular properties and descriptors. It is shown that the variation in experimental measurements of Papp is smaller than the error in QSAR predictions indicating that predictions are not quantitatively perfect, although qualitatively useful. We get better predictions if the training set is large and diverse, rather than smaller and more internally consistent. This is because prediction accuracy falls off quickly with decreasing similarity to the training set and it is therefore better to have as large a training set as possible. While single physical parameters are not as good as a full QSAR model in predicting Papp, logD seems the most important parameter. Intermediate values of logD are associated with higher Papp.</description><identifier>ISSN: 1868-1743</identifier><identifier>EISSN: 1868-1751</identifier><identifier>DOI: 10.1002/minf.201100157</identifier><identifier>PMID: 27477094</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>ADME ; Caco-2 ; Lipophilicity ; LLC-PK1 ; logD ; Molecular modeling ; Permeability ; QSAR ; Random forest</subject><ispartof>Molecular informatics, 2012-04, Vol.31 (3-4), p.231-245</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4497-5506b93761edf3e819a16517798d4c09d5ba05155574adf9a3f9019e9c33722c3</citedby><cites>FETCH-LOGICAL-c4497-5506b93761edf3e819a16517798d4c09d5ba05155574adf9a3f9019e9c33722c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fminf.201100157$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fminf.201100157$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27477094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sherer, Edward C.</creatorcontrib><creatorcontrib>Verras, Andreas</creatorcontrib><creatorcontrib>Madeira, Maria</creatorcontrib><creatorcontrib>Hagmann, William K.</creatorcontrib><creatorcontrib>Sheridan, Robert P.</creatorcontrib><creatorcontrib>Roberts, Drew</creatorcontrib><creatorcontrib>Bleasby, Kelly</creatorcontrib><creatorcontrib>Cornell, Wendy D.</creatorcontrib><title>QSAR Prediction of Passive Permeability in the LLC-PK1 Cell Line: Trends in Molecular Properties and Cross-Prediction of Caco-2 Permeabilities</title><title>Molecular informatics</title><addtitle>Mol. Inf</addtitle><description>A QSAR model for predicting passive permeability (Papp) was derived from Papp values measured in the LLC‐PK1 cell line. The QSAR method and descriptor set that performed best in terms of cross‐validation was random forest with a combination of AP, DP, and MOE_2D descriptors. The QSAR model was used to predict the Caco‐2 cell permeability for 313 compounds described in the literature with good success. We find that passive permeability for different cell lines can be predicted with similar molecular properties and descriptors. It is shown that the variation in experimental measurements of Papp is smaller than the error in QSAR predictions indicating that predictions are not quantitatively perfect, although qualitatively useful. We get better predictions if the training set is large and diverse, rather than smaller and more internally consistent. This is because prediction accuracy falls off quickly with decreasing similarity to the training set and it is therefore better to have as large a training set as possible. While single physical parameters are not as good as a full QSAR model in predicting Papp, logD seems the most important parameter. Intermediate values of logD are associated with higher Papp.</description><subject>ADME</subject><subject>Caco-2</subject><subject>Lipophilicity</subject><subject>LLC-PK1</subject><subject>logD</subject><subject>Molecular modeling</subject><subject>Permeability</subject><subject>QSAR</subject><subject>Random forest</subject><issn>1868-1743</issn><issn>1868-1751</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU1PGzEQhq2KqiCaa4_IRy6b2uv12uaGFgKIDQ0fbY-W450Vhv0I9oY2f6K_GUehUXqqL-ORnvcdzbwIfaFkTAlJv7auq8cpobGhXHxAB1TmMqGC073tP2P7aBTCE4mPpbmQ6hPaT0UmBFHZAfpze396h2ceKmcH13e4r_HMhOBeAc_At2DmrnHDCrsOD4-Ay7JIZtcUF9A0uHQdnOAHD10V1sC0b8AuG-OjYb8APzgI2HQVLnwfQvLvlMLYPkl3h0T6M_pYmybA6L0eou-T84fiMim_XVwVp2Vis0yJhHOSzxUTOYWqZiCpMjTnVAglq8wSVfG5IZxyzkVmqloZVitCFSjLmEhTyw7R8cZ34fuXJYRBty7YuJPpoF8GTSWRLN4u5xEdb1C7XsJDrRfetcavNCV6HYNex6C3MUTB0bv3ct5CtcX_Hj0CagP8cg2s_mOnp1c3k13zZKN1YYDfW63xzzoXTHD98-ZC3_5Ql2oqz7Rkb-l3od4</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Sherer, Edward C.</creator><creator>Verras, Andreas</creator><creator>Madeira, Maria</creator><creator>Hagmann, William K.</creator><creator>Sheridan, Robert P.</creator><creator>Roberts, Drew</creator><creator>Bleasby, Kelly</creator><creator>Cornell, Wendy D.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201204</creationdate><title>QSAR Prediction of Passive Permeability in the LLC-PK1 Cell Line: Trends in Molecular Properties and Cross-Prediction of Caco-2 Permeabilities</title><author>Sherer, Edward C. ; Verras, Andreas ; Madeira, Maria ; Hagmann, William K. ; Sheridan, Robert P. ; Roberts, Drew ; Bleasby, Kelly ; Cornell, Wendy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4497-5506b93761edf3e819a16517798d4c09d5ba05155574adf9a3f9019e9c33722c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ADME</topic><topic>Caco-2</topic><topic>Lipophilicity</topic><topic>LLC-PK1</topic><topic>logD</topic><topic>Molecular modeling</topic><topic>Permeability</topic><topic>QSAR</topic><topic>Random forest</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherer, Edward C.</creatorcontrib><creatorcontrib>Verras, Andreas</creatorcontrib><creatorcontrib>Madeira, Maria</creatorcontrib><creatorcontrib>Hagmann, William K.</creatorcontrib><creatorcontrib>Sheridan, Robert P.</creatorcontrib><creatorcontrib>Roberts, Drew</creatorcontrib><creatorcontrib>Bleasby, Kelly</creatorcontrib><creatorcontrib>Cornell, Wendy D.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sherer, Edward C.</au><au>Verras, Andreas</au><au>Madeira, Maria</au><au>Hagmann, William K.</au><au>Sheridan, Robert P.</au><au>Roberts, Drew</au><au>Bleasby, Kelly</au><au>Cornell, Wendy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QSAR Prediction of Passive Permeability in the LLC-PK1 Cell Line: Trends in Molecular Properties and Cross-Prediction of Caco-2 Permeabilities</atitle><jtitle>Molecular informatics</jtitle><addtitle>Mol. Inf</addtitle><date>2012-04</date><risdate>2012</risdate><volume>31</volume><issue>3-4</issue><spage>231</spage><epage>245</epage><pages>231-245</pages><issn>1868-1743</issn><eissn>1868-1751</eissn><abstract>A QSAR model for predicting passive permeability (Papp) was derived from Papp values measured in the LLC‐PK1 cell line. The QSAR method and descriptor set that performed best in terms of cross‐validation was random forest with a combination of AP, DP, and MOE_2D descriptors. The QSAR model was used to predict the Caco‐2 cell permeability for 313 compounds described in the literature with good success. We find that passive permeability for different cell lines can be predicted with similar molecular properties and descriptors. It is shown that the variation in experimental measurements of Papp is smaller than the error in QSAR predictions indicating that predictions are not quantitatively perfect, although qualitatively useful. We get better predictions if the training set is large and diverse, rather than smaller and more internally consistent. This is because prediction accuracy falls off quickly with decreasing similarity to the training set and it is therefore better to have as large a training set as possible. While single physical parameters are not as good as a full QSAR model in predicting Papp, logD seems the most important parameter. Intermediate values of logD are associated with higher Papp.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>27477094</pmid><doi>10.1002/minf.201100157</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-1743 |
ispartof | Molecular informatics, 2012-04, Vol.31 (3-4), p.231-245 |
issn | 1868-1743 1868-1751 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808374365 |
source | Access via Wiley Online Library |
subjects | ADME Caco-2 Lipophilicity LLC-PK1 logD Molecular modeling Permeability QSAR Random forest |
title | QSAR Prediction of Passive Permeability in the LLC-PK1 Cell Line: Trends in Molecular Properties and Cross-Prediction of Caco-2 Permeabilities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QSAR%20Prediction%20of%20Passive%20Permeability%20in%20the%20LLC-PK1%20Cell%20Line:%20Trends%20in%20Molecular%20Properties%20and%20Cross-Prediction%20of%20Caco-2%20Permeabilities&rft.jtitle=Molecular%20informatics&rft.au=Sherer,%20Edward%20C.&rft.date=2012-04&rft.volume=31&rft.issue=3-4&rft.spage=231&rft.epage=245&rft.pages=231-245&rft.issn=1868-1743&rft.eissn=1868-1751&rft_id=info:doi/10.1002/minf.201100157&rft_dat=%3Cproquest_cross%3E1808374365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808374365&rft_id=info:pmid/27477094&rfr_iscdi=true |