Determining Soil Thermal Conductivity Through Numerical Simulation of a Heating Test on a Heat Exchanger Pile

Heat exchanger pile foundations have a great potential of providing space heating and cooling to built structures. This technology is a variant of vertical borehole heat exchangers. A heat exchanger pile has heat absorber pipes firmly attached to its reinforcement cage. Heat carrier fluid circulates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geotechnical and geological engineering 2015-04, Vol.33 (2), p.239-252
Hauptverfasser: Yu, K. L., Singh, R. M., Bouazza, A., Bui, H. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue 2
container_start_page 239
container_title Geotechnical and geological engineering
container_volume 33
creator Yu, K. L.
Singh, R. M.
Bouazza, A.
Bui, H. H.
description Heat exchanger pile foundations have a great potential of providing space heating and cooling to built structures. This technology is a variant of vertical borehole heat exchangers. A heat exchanger pile has heat absorber pipes firmly attached to its reinforcement cage. Heat carrier fluid circulates inside the pipes to transfer heat energy between the piles and the surrounding ground. Borehole heat exchangers technology is well established but the heat exchanger pile technology is relatively new and requires further investigation of its heat transfer process. The heat transfer process that affects the thermal performance of a heat exchanger pile system is highly dependent on the thermal conductivity of the surrounding ground. This paper presents a numerical prediction of a thermal conductivity ground profile based on a field heating test conducted on a heat exchanger pile. The thermal conductivity determined from the numerical simulation was compared with the ones evaluated from field and laboratory experiments. It was found that the thermal conductivity quantified numerically was in close agreement with the laboratory test results, whereas it differed from the field experimental value.
doi_str_mv 10.1007/s10706-015-9870-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808373550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685797596</sourcerecordid><originalsourceid>FETCH-LOGICAL-a518t-7315a5fc391b3ea4ab23bf9b2a531b875e34e0c8ccd80c4dc86eb360535a73d93</originalsourceid><addsrcrecordid>eNqFkVFLwzAUhYMoOKc_wLeAL75Ub5qlSR5lTieICs7nkGbpFmmbmbTi_PVmVBAE8Snck-8cbnIQOiVwQQD4ZSTAociAsEwKDtnnHhoRxmlGWC730QhkARklIj9ERzG-AkBeABmh5tp2NjSude0KP3tX48U6zbrGU98ue9O5d9dtkxh8v1rjh76xwZl0_eyavtad8y32FdZ4btOQMhY2djiJg4JnH2at25UN-MnV9hgdVLqO9uT7HKOXm9liOs_uH2_vplf3mWZEdBmnhGlWGSpJSa2e6DKnZSXLXDNKSsGZpRMLRhizFGAmSyMKW9ICGGWa06WkY3Q-5G6Cf-vTRqpx0di61q31fVREgKCcMgb_o4VgXHImi4Se_UJffR_a9BCV50xyWYi0whiRgTLBxxhspTbBNTpsFQG160oNXanUldp1pT6TJx88MbG73_pJ_tv0Ba3Clwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259796805</pqid></control><display><type>article</type><title>Determining Soil Thermal Conductivity Through Numerical Simulation of a Heating Test on a Heat Exchanger Pile</title><source>Springer Nature - Complete Springer Journals</source><creator>Yu, K. L. ; Singh, R. M. ; Bouazza, A. ; Bui, H. H.</creator><creatorcontrib>Yu, K. L. ; Singh, R. M. ; Bouazza, A. ; Bui, H. H.</creatorcontrib><description>Heat exchanger pile foundations have a great potential of providing space heating and cooling to built structures. This technology is a variant of vertical borehole heat exchangers. A heat exchanger pile has heat absorber pipes firmly attached to its reinforcement cage. Heat carrier fluid circulates inside the pipes to transfer heat energy between the piles and the surrounding ground. Borehole heat exchangers technology is well established but the heat exchanger pile technology is relatively new and requires further investigation of its heat transfer process. The heat transfer process that affects the thermal performance of a heat exchanger pile system is highly dependent on the thermal conductivity of the surrounding ground. This paper presents a numerical prediction of a thermal conductivity ground profile based on a field heating test conducted on a heat exchanger pile. The thermal conductivity determined from the numerical simulation was compared with the ones evaluated from field and laboratory experiments. It was found that the thermal conductivity quantified numerically was in close agreement with the laboratory test results, whereas it differed from the field experimental value.</description><identifier>ISSN: 0960-3182</identifier><identifier>EISSN: 1573-1529</identifier><identifier>DOI: 10.1007/s10706-015-9870-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boreholes ; Civil Engineering ; Computer simulation ; Earth and Environmental Science ; Earth Sciences ; Geotechnical Engineering &amp; Applied Earth Sciences ; Grounds ; Heat conductivity ; Heat exchangers ; Heat transfer ; Heating ; Hydrogeology ; Laboratories ; Laboratory tests ; Mathematical models ; Numerical prediction ; Original Paper ; Pile foundations ; Piles ; Pipes ; Simulation ; Soil ; Soil conductivity ; Space heating ; Technology ; Terrestrial Pollution ; Thermal conductivity ; Waste Management/Waste Technology</subject><ispartof>Geotechnical and geological engineering, 2015-04, Vol.33 (2), p.239-252</ispartof><rights>Springer International Publishing Switzerland 2015</rights><rights>Geotechnical and Geological Engineering is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a518t-7315a5fc391b3ea4ab23bf9b2a531b875e34e0c8ccd80c4dc86eb360535a73d93</citedby><cites>FETCH-LOGICAL-a518t-7315a5fc391b3ea4ab23bf9b2a531b875e34e0c8ccd80c4dc86eb360535a73d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10706-015-9870-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10706-015-9870-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Yu, K. L.</creatorcontrib><creatorcontrib>Singh, R. M.</creatorcontrib><creatorcontrib>Bouazza, A.</creatorcontrib><creatorcontrib>Bui, H. H.</creatorcontrib><title>Determining Soil Thermal Conductivity Through Numerical Simulation of a Heating Test on a Heat Exchanger Pile</title><title>Geotechnical and geological engineering</title><addtitle>Geotech Geol Eng</addtitle><description>Heat exchanger pile foundations have a great potential of providing space heating and cooling to built structures. This technology is a variant of vertical borehole heat exchangers. A heat exchanger pile has heat absorber pipes firmly attached to its reinforcement cage. Heat carrier fluid circulates inside the pipes to transfer heat energy between the piles and the surrounding ground. Borehole heat exchangers technology is well established but the heat exchanger pile technology is relatively new and requires further investigation of its heat transfer process. The heat transfer process that affects the thermal performance of a heat exchanger pile system is highly dependent on the thermal conductivity of the surrounding ground. This paper presents a numerical prediction of a thermal conductivity ground profile based on a field heating test conducted on a heat exchanger pile. The thermal conductivity determined from the numerical simulation was compared with the ones evaluated from field and laboratory experiments. It was found that the thermal conductivity quantified numerically was in close agreement with the laboratory test results, whereas it differed from the field experimental value.</description><subject>Boreholes</subject><subject>Civil Engineering</subject><subject>Computer simulation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Grounds</subject><subject>Heat conductivity</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Hydrogeology</subject><subject>Laboratories</subject><subject>Laboratory tests</subject><subject>Mathematical models</subject><subject>Numerical prediction</subject><subject>Original Paper</subject><subject>Pile foundations</subject><subject>Piles</subject><subject>Pipes</subject><subject>Simulation</subject><subject>Soil</subject><subject>Soil conductivity</subject><subject>Space heating</subject><subject>Technology</subject><subject>Terrestrial Pollution</subject><subject>Thermal conductivity</subject><subject>Waste Management/Waste Technology</subject><issn>0960-3182</issn><issn>1573-1529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkVFLwzAUhYMoOKc_wLeAL75Ub5qlSR5lTieICs7nkGbpFmmbmbTi_PVmVBAE8Snck-8cbnIQOiVwQQD4ZSTAociAsEwKDtnnHhoRxmlGWC730QhkARklIj9ERzG-AkBeABmh5tp2NjSude0KP3tX48U6zbrGU98ue9O5d9dtkxh8v1rjh76xwZl0_eyavtad8y32FdZ4btOQMhY2djiJg4JnH2at25UN-MnV9hgdVLqO9uT7HKOXm9liOs_uH2_vplf3mWZEdBmnhGlWGSpJSa2e6DKnZSXLXDNKSsGZpRMLRhizFGAmSyMKW9ICGGWa06WkY3Q-5G6Cf-vTRqpx0di61q31fVREgKCcMgb_o4VgXHImi4Se_UJffR_a9BCV50xyWYi0whiRgTLBxxhspTbBNTpsFQG160oNXanUldp1pT6TJx88MbG73_pJ_tv0Ba3Clwo</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Yu, K. L.</creator><creator>Singh, R. M.</creator><creator>Bouazza, A.</creator><creator>Bui, H. H.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20150401</creationdate><title>Determining Soil Thermal Conductivity Through Numerical Simulation of a Heating Test on a Heat Exchanger Pile</title><author>Yu, K. L. ; Singh, R. M. ; Bouazza, A. ; Bui, H. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a518t-7315a5fc391b3ea4ab23bf9b2a531b875e34e0c8ccd80c4dc86eb360535a73d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boreholes</topic><topic>Civil Engineering</topic><topic>Computer simulation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Grounds</topic><topic>Heat conductivity</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Hydrogeology</topic><topic>Laboratories</topic><topic>Laboratory tests</topic><topic>Mathematical models</topic><topic>Numerical prediction</topic><topic>Original Paper</topic><topic>Pile foundations</topic><topic>Piles</topic><topic>Pipes</topic><topic>Simulation</topic><topic>Soil</topic><topic>Soil conductivity</topic><topic>Space heating</topic><topic>Technology</topic><topic>Terrestrial Pollution</topic><topic>Thermal conductivity</topic><topic>Waste Management/Waste Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, K. L.</creatorcontrib><creatorcontrib>Singh, R. M.</creatorcontrib><creatorcontrib>Bouazza, A.</creatorcontrib><creatorcontrib>Bui, H. H.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Geotechnical and geological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, K. L.</au><au>Singh, R. M.</au><au>Bouazza, A.</au><au>Bui, H. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining Soil Thermal Conductivity Through Numerical Simulation of a Heating Test on a Heat Exchanger Pile</atitle><jtitle>Geotechnical and geological engineering</jtitle><stitle>Geotech Geol Eng</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>33</volume><issue>2</issue><spage>239</spage><epage>252</epage><pages>239-252</pages><issn>0960-3182</issn><eissn>1573-1529</eissn><abstract>Heat exchanger pile foundations have a great potential of providing space heating and cooling to built structures. This technology is a variant of vertical borehole heat exchangers. A heat exchanger pile has heat absorber pipes firmly attached to its reinforcement cage. Heat carrier fluid circulates inside the pipes to transfer heat energy between the piles and the surrounding ground. Borehole heat exchangers technology is well established but the heat exchanger pile technology is relatively new and requires further investigation of its heat transfer process. The heat transfer process that affects the thermal performance of a heat exchanger pile system is highly dependent on the thermal conductivity of the surrounding ground. This paper presents a numerical prediction of a thermal conductivity ground profile based on a field heating test conducted on a heat exchanger pile. The thermal conductivity determined from the numerical simulation was compared with the ones evaluated from field and laboratory experiments. It was found that the thermal conductivity quantified numerically was in close agreement with the laboratory test results, whereas it differed from the field experimental value.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10706-015-9870-z</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-3182
ispartof Geotechnical and geological engineering, 2015-04, Vol.33 (2), p.239-252
issn 0960-3182
1573-1529
language eng
recordid cdi_proquest_miscellaneous_1808373550
source Springer Nature - Complete Springer Journals
subjects Boreholes
Civil Engineering
Computer simulation
Earth and Environmental Science
Earth Sciences
Geotechnical Engineering & Applied Earth Sciences
Grounds
Heat conductivity
Heat exchangers
Heat transfer
Heating
Hydrogeology
Laboratories
Laboratory tests
Mathematical models
Numerical prediction
Original Paper
Pile foundations
Piles
Pipes
Simulation
Soil
Soil conductivity
Space heating
Technology
Terrestrial Pollution
Thermal conductivity
Waste Management/Waste Technology
title Determining Soil Thermal Conductivity Through Numerical Simulation of a Heating Test on a Heat Exchanger Pile
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A24%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20Soil%20Thermal%20Conductivity%20Through%20Numerical%20Simulation%20of%20a%20Heating%20Test%20on%20a%20Heat%20Exchanger%20Pile&rft.jtitle=Geotechnical%20and%20geological%20engineering&rft.au=Yu,%20K.%20L.&rft.date=2015-04-01&rft.volume=33&rft.issue=2&rft.spage=239&rft.epage=252&rft.pages=239-252&rft.issn=0960-3182&rft.eissn=1573-1529&rft_id=info:doi/10.1007/s10706-015-9870-z&rft_dat=%3Cproquest_cross%3E1685797596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259796805&rft_id=info:pmid/&rfr_iscdi=true