The formation of micafish: A modeling investigation based on micromechanics

Micafish porphyroclasts are common and excellent shear-sense indicators in mylonites. Although their geometries are well characterized by recent studies, they are still poorly understood. Here we simulate the behavior in mylonites of micafish by regarding them as anisotropic power-law ellipsoidal in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural geology 2014-11, Vol.68, p.300-315
Hauptverfasser: Chen, Yin, Jiang, Dazhi, Zhu, Guang, Xiang, Biwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 315
container_issue
container_start_page 300
container_title Journal of structural geology
container_volume 68
creator Chen, Yin
Jiang, Dazhi
Zhu, Guang
Xiang, Biwei
description Micafish porphyroclasts are common and excellent shear-sense indicators in mylonites. Although their geometries are well characterized by recent studies, they are still poorly understood. Here we simulate the behavior in mylonites of micafish by regarding them as anisotropic power-law ellipsoidal inhomogeneities embedded in a power-law viscous material subjected to general plane-straining non-coaxial flows. We apply the Eshelby's solutions extended for general non-Newtonian power-law materials. The anisotropy of mica is defined by two different shear viscosities: a weak shear viscosity associated with slip on cleavage and a strong shear viscosity without activating the cleavage slip. Our modeling reproduces naturally observed geometries of micafish. Natural micafish geometries require that the weak shear viscosity of mica must be lower and the strong shear viscosity must be greater than the matrix viscosity. We demonstrate that regardless of the initial condition of micafish, the shape long axis and the cleavage trace observed on the vorticity-normal section will most commonly end up at a small antithetic angle relative to the shear plane or parallel to it. Our modeling results are consistent with the mica rheological properties determined by rock deformation experiments. •Micafish are simulated based on micromechanics of non-Newtonian viscous materials.•Micafish are regarded as anisotropic ellipsoids dispersed in an isotropic matrix.•Slip along cleavage and the presence of anisotropy lead to natural micafish geometries.•Mica is weaker than matrix for slip along cleavage and stronger without cleavage slip.•Final micafish geometries at large finite strains are insensitive to their initial states.
doi_str_mv 10.1016/j.jsg.2013.12.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808370289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0191814113002241</els_id><sourcerecordid>1808370289</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-846168e04300daf482d5a7bfe5454c4ad5719280fc6b409da11829137eed571c3</originalsourceid><addsrcrecordid>eNqNkE1OwzAQRi0EEqVwAHZZsknwxE7iwKpC_EmV2JS15drj1lESlzitxG04CyfDVVgjViPNvG808wi5BpoBhfK2yZqwyXIKLIM8o7Q4ITMQFUsh9k7JjEINqQAO5-QihIbGTAF8RparLSbWD50ane8Tb5POaWVd2N4li6TzBlvXbxLXHzCMbjNRaxXQJL7__orw4DvUW9U7HS7JmVVtwKvfOifvT4-rh5d0-fb8-rBYpoqJckwFL6EUSDmj1CjLRW4KVa0tFrzgmitTVFDnglpdrjmtjQIQeQ2sQjyONJuTm2nvbvAf-3iY7FzQ2LaqR78PEgQVrKK5qP-FRkU1g4jChMaXQhjQyt3gOjV8SqDyKFk2MkqWR8kSchklx8z9lMH47sHhIIN22Gs0bkA9SuPdH-kfElGEVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808120931</pqid></control><display><type>article</type><title>The formation of micafish: A modeling investigation based on micromechanics</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Yin ; Jiang, Dazhi ; Zhu, Guang ; Xiang, Biwei</creator><creatorcontrib>Chen, Yin ; Jiang, Dazhi ; Zhu, Guang ; Xiang, Biwei</creatorcontrib><description>Micafish porphyroclasts are common and excellent shear-sense indicators in mylonites. Although their geometries are well characterized by recent studies, they are still poorly understood. Here we simulate the behavior in mylonites of micafish by regarding them as anisotropic power-law ellipsoidal inhomogeneities embedded in a power-law viscous material subjected to general plane-straining non-coaxial flows. We apply the Eshelby's solutions extended for general non-Newtonian power-law materials. The anisotropy of mica is defined by two different shear viscosities: a weak shear viscosity associated with slip on cleavage and a strong shear viscosity without activating the cleavage slip. Our modeling reproduces naturally observed geometries of micafish. Natural micafish geometries require that the weak shear viscosity of mica must be lower and the strong shear viscosity must be greater than the matrix viscosity. We demonstrate that regardless of the initial condition of micafish, the shape long axis and the cleavage trace observed on the vorticity-normal section will most commonly end up at a small antithetic angle relative to the shear plane or parallel to it. Our modeling results are consistent with the mica rheological properties determined by rock deformation experiments. •Micafish are simulated based on micromechanics of non-Newtonian viscous materials.•Micafish are regarded as anisotropic ellipsoids dispersed in an isotropic matrix.•Slip along cleavage and the presence of anisotropy lead to natural micafish geometries.•Mica is weaker than matrix for slip along cleavage and stronger without cleavage slip.•Final micafish geometries at large finite strains are insensitive to their initial states.</description><identifier>ISSN: 0191-8141</identifier><identifier>EISSN: 1873-1201</identifier><identifier>DOI: 10.1016/j.jsg.2013.12.005</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anisotropy ; Cleavage ; Fabric ; Initial conditions ; Mica ; Micafish ; Modelling ; Mylonite ; Numerical modeling ; Rock ; Shear viscosity ; Slip ; Viscous material</subject><ispartof>Journal of structural geology, 2014-11, Vol.68, p.300-315</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-846168e04300daf482d5a7bfe5454c4ad5719280fc6b409da11829137eed571c3</citedby><cites>FETCH-LOGICAL-a386t-846168e04300daf482d5a7bfe5454c4ad5719280fc6b409da11829137eed571c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0191814113002241$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Chen, Yin</creatorcontrib><creatorcontrib>Jiang, Dazhi</creatorcontrib><creatorcontrib>Zhu, Guang</creatorcontrib><creatorcontrib>Xiang, Biwei</creatorcontrib><title>The formation of micafish: A modeling investigation based on micromechanics</title><title>Journal of structural geology</title><description>Micafish porphyroclasts are common and excellent shear-sense indicators in mylonites. Although their geometries are well characterized by recent studies, they are still poorly understood. Here we simulate the behavior in mylonites of micafish by regarding them as anisotropic power-law ellipsoidal inhomogeneities embedded in a power-law viscous material subjected to general plane-straining non-coaxial flows. We apply the Eshelby's solutions extended for general non-Newtonian power-law materials. The anisotropy of mica is defined by two different shear viscosities: a weak shear viscosity associated with slip on cleavage and a strong shear viscosity without activating the cleavage slip. Our modeling reproduces naturally observed geometries of micafish. Natural micafish geometries require that the weak shear viscosity of mica must be lower and the strong shear viscosity must be greater than the matrix viscosity. We demonstrate that regardless of the initial condition of micafish, the shape long axis and the cleavage trace observed on the vorticity-normal section will most commonly end up at a small antithetic angle relative to the shear plane or parallel to it. Our modeling results are consistent with the mica rheological properties determined by rock deformation experiments. •Micafish are simulated based on micromechanics of non-Newtonian viscous materials.•Micafish are regarded as anisotropic ellipsoids dispersed in an isotropic matrix.•Slip along cleavage and the presence of anisotropy lead to natural micafish geometries.•Mica is weaker than matrix for slip along cleavage and stronger without cleavage slip.•Final micafish geometries at large finite strains are insensitive to their initial states.</description><subject>Anisotropy</subject><subject>Cleavage</subject><subject>Fabric</subject><subject>Initial conditions</subject><subject>Mica</subject><subject>Micafish</subject><subject>Modelling</subject><subject>Mylonite</subject><subject>Numerical modeling</subject><subject>Rock</subject><subject>Shear viscosity</subject><subject>Slip</subject><subject>Viscous material</subject><issn>0191-8141</issn><issn>1873-1201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE1OwzAQRi0EEqVwAHZZsknwxE7iwKpC_EmV2JS15drj1lESlzitxG04CyfDVVgjViPNvG808wi5BpoBhfK2yZqwyXIKLIM8o7Q4ITMQFUsh9k7JjEINqQAO5-QihIbGTAF8RparLSbWD50ane8Tb5POaWVd2N4li6TzBlvXbxLXHzCMbjNRaxXQJL7__orw4DvUW9U7HS7JmVVtwKvfOifvT4-rh5d0-fb8-rBYpoqJckwFL6EUSDmj1CjLRW4KVa0tFrzgmitTVFDnglpdrjmtjQIQeQ2sQjyONJuTm2nvbvAf-3iY7FzQ2LaqR78PEgQVrKK5qP-FRkU1g4jChMaXQhjQyt3gOjV8SqDyKFk2MkqWR8kSchklx8z9lMH47sHhIIN22Gs0bkA9SuPdH-kfElGEVg</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Chen, Yin</creator><creator>Jiang, Dazhi</creator><creator>Zhu, Guang</creator><creator>Xiang, Biwei</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20141101</creationdate><title>The formation of micafish: A modeling investigation based on micromechanics</title><author>Chen, Yin ; Jiang, Dazhi ; Zhu, Guang ; Xiang, Biwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-846168e04300daf482d5a7bfe5454c4ad5719280fc6b409da11829137eed571c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anisotropy</topic><topic>Cleavage</topic><topic>Fabric</topic><topic>Initial conditions</topic><topic>Mica</topic><topic>Micafish</topic><topic>Modelling</topic><topic>Mylonite</topic><topic>Numerical modeling</topic><topic>Rock</topic><topic>Shear viscosity</topic><topic>Slip</topic><topic>Viscous material</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yin</creatorcontrib><creatorcontrib>Jiang, Dazhi</creatorcontrib><creatorcontrib>Zhu, Guang</creatorcontrib><creatorcontrib>Xiang, Biwei</creatorcontrib><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of structural geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yin</au><au>Jiang, Dazhi</au><au>Zhu, Guang</au><au>Xiang, Biwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The formation of micafish: A modeling investigation based on micromechanics</atitle><jtitle>Journal of structural geology</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>68</volume><spage>300</spage><epage>315</epage><pages>300-315</pages><issn>0191-8141</issn><eissn>1873-1201</eissn><abstract>Micafish porphyroclasts are common and excellent shear-sense indicators in mylonites. Although their geometries are well characterized by recent studies, they are still poorly understood. Here we simulate the behavior in mylonites of micafish by regarding them as anisotropic power-law ellipsoidal inhomogeneities embedded in a power-law viscous material subjected to general plane-straining non-coaxial flows. We apply the Eshelby's solutions extended for general non-Newtonian power-law materials. The anisotropy of mica is defined by two different shear viscosities: a weak shear viscosity associated with slip on cleavage and a strong shear viscosity without activating the cleavage slip. Our modeling reproduces naturally observed geometries of micafish. Natural micafish geometries require that the weak shear viscosity of mica must be lower and the strong shear viscosity must be greater than the matrix viscosity. We demonstrate that regardless of the initial condition of micafish, the shape long axis and the cleavage trace observed on the vorticity-normal section will most commonly end up at a small antithetic angle relative to the shear plane or parallel to it. Our modeling results are consistent with the mica rheological properties determined by rock deformation experiments. •Micafish are simulated based on micromechanics of non-Newtonian viscous materials.•Micafish are regarded as anisotropic ellipsoids dispersed in an isotropic matrix.•Slip along cleavage and the presence of anisotropy lead to natural micafish geometries.•Mica is weaker than matrix for slip along cleavage and stronger without cleavage slip.•Final micafish geometries at large finite strains are insensitive to their initial states.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jsg.2013.12.005</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0191-8141
ispartof Journal of structural geology, 2014-11, Vol.68, p.300-315
issn 0191-8141
1873-1201
language eng
recordid cdi_proquest_miscellaneous_1808370289
source Elsevier ScienceDirect Journals
subjects Anisotropy
Cleavage
Fabric
Initial conditions
Mica
Micafish
Modelling
Mylonite
Numerical modeling
Rock
Shear viscosity
Slip
Viscous material
title The formation of micafish: A modeling investigation based on micromechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20formation%20of%20micafish:%20A%20modeling%20investigation%20based%20on%C2%A0micromechanics&rft.jtitle=Journal%20of%20structural%20geology&rft.au=Chen,%20Yin&rft.date=2014-11-01&rft.volume=68&rft.spage=300&rft.epage=315&rft.pages=300-315&rft.issn=0191-8141&rft.eissn=1873-1201&rft_id=info:doi/10.1016/j.jsg.2013.12.005&rft_dat=%3Cproquest_cross%3E1808370289%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808120931&rft_id=info:pmid/&rft_els_id=S0191814113002241&rfr_iscdi=true