The propagation and seismicity of dyke injection, new experimental evidence
To reach the surface, dykes must overcome the inherent tensile strength of the country rock. As they do, they generate swarms of seismic signals, frequently used for forecasting. In this study we pressurize and inject molten acrylic into an encapsulating host rocks of (1) Etna basalt and (2) Comiso...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2016-03, Vol.43 (5), p.1876-1883 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1883 |
---|---|
container_issue | 5 |
container_start_page | 1876 |
container_title | Geophysical research letters |
container_volume | 43 |
creator | Bakker, Richard R. Fazio, Marco Benson, Philip M. Hess, Kai‐Uwe Dingwell, Donald B. |
description | To reach the surface, dykes must overcome the inherent tensile strength of the country rock. As they do, they generate swarms of seismic signals, frequently used for forecasting. In this study we pressurize and inject molten acrylic into an encapsulating host rocks of (1) Etna basalt and (2) Comiso limestone, at 30 MPa of confining pressure. Fracture was achieved at 12 MPa for Etna basalt and 7.2 MPa for Comiso limestone. The generation of radial fractures was accompanied by acoustic emissions (AE) at a dominant frequency of 600 kHz. During “magma” movement in the dykes, AE events of approximately 150 kHz dominant frequency were recorded. We interpret our data using AE location and dominant frequency analysis, concluding that the seismicity associated with magma transport in dykes peaks during initial dyke creation but remains significant as long as magma movement continues. These results have important implications for seismic monitoring of active volcanoes.
Key Points
Hybrid‐analogue rock deformation experiments at PT using basalt and PMMA
AE monitoring the formation of tensile fractures and subsequent viscous fluid flow
Fracturing and fluid movement are characterized by different frequency spectra |
doi_str_mv | 10.1002/2015GL066852 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808368935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808368935</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5275-8a89f02ce8762527622ff4da937e1be86131a02a0ee80ff18f01969375f5edf53</originalsourceid><addsrcrecordid>eNqN0UtLAzEQAOAgCtbqzR8Q8OLB6kzSvI4iWsWCIHpe4u5EU7e7dbO19t8bqQfxIJ4yZD6GeTB2iHCKAOJMAKrJFLS2SmyxAbrxeGQBzDYbALgcC6N32V5KMwCQIHHAbh9eiC-6duGffR_bhvum4olimscy9mveBl6tX4nHZkblFzjhDa04fSyoi3Nqel9zeo8VNSXts53g60QH3--QPV5dPlxcj6Z3k5uL8-nIK2HUyHrrAoiSrNEi_2ghQhhX3klD-ERWo0QPwgORhRDQBkCnc1YFRVVQcsiON3Vz329LSn0xj6mkuvYNtctUoAUrtXXyfxS0cgYzPfpFZ-2ya_IgBTpEgWj0-E9ljEYrlLFZnWxU2bUpdRSKRd6W79YFQvF1quLnqTIXG76KNa3_tMXkfqqkc0p-AksCkcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1776182578</pqid></control><display><type>article</type><title>The propagation and seismicity of dyke injection, new experimental evidence</title><source>Wiley Online Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley-Blackwell AGU Digital Archive</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bakker, Richard R. ; Fazio, Marco ; Benson, Philip M. ; Hess, Kai‐Uwe ; Dingwell, Donald B.</creator><creatorcontrib>Bakker, Richard R. ; Fazio, Marco ; Benson, Philip M. ; Hess, Kai‐Uwe ; Dingwell, Donald B.</creatorcontrib><description>To reach the surface, dykes must overcome the inherent tensile strength of the country rock. As they do, they generate swarms of seismic signals, frequently used for forecasting. In this study we pressurize and inject molten acrylic into an encapsulating host rocks of (1) Etna basalt and (2) Comiso limestone, at 30 MPa of confining pressure. Fracture was achieved at 12 MPa for Etna basalt and 7.2 MPa for Comiso limestone. The generation of radial fractures was accompanied by acoustic emissions (AE) at a dominant frequency of 600 kHz. During “magma” movement in the dykes, AE events of approximately 150 kHz dominant frequency were recorded. We interpret our data using AE location and dominant frequency analysis, concluding that the seismicity associated with magma transport in dykes peaks during initial dyke creation but remains significant as long as magma movement continues. These results have important implications for seismic monitoring of active volcanoes.
Key Points
Hybrid‐analogue rock deformation experiments at PT using basalt and PMMA
AE monitoring the formation of tensile fractures and subsequent viscous fluid flow
Fracturing and fluid movement are characterized by different frequency spectra</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL066852</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Acoustic emission ; Basalt ; Confining ; deformation ; Dikes ; dyke formation ; Dykes ; Encapsulation ; Forecasting ; Fracture mechanics ; Fractures ; Frequency analysis ; HPT experiments ; Injection ; Lava ; Limestone ; Magma ; Monitoring ; Movement ; Pressure ; Propagation ; Rock ; Rocks ; Seismicity ; Stone ; Tensile strength ; Transport ; volcanic basement ; Volcanoes</subject><ispartof>Geophysical research letters, 2016-03, Vol.43 (5), p.1876-1883</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5275-8a89f02ce8762527622ff4da937e1be86131a02a0ee80ff18f01969375f5edf53</citedby><cites>FETCH-LOGICAL-a5275-8a89f02ce8762527622ff4da937e1be86131a02a0ee80ff18f01969375f5edf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL066852$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL066852$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Bakker, Richard R.</creatorcontrib><creatorcontrib>Fazio, Marco</creatorcontrib><creatorcontrib>Benson, Philip M.</creatorcontrib><creatorcontrib>Hess, Kai‐Uwe</creatorcontrib><creatorcontrib>Dingwell, Donald B.</creatorcontrib><title>The propagation and seismicity of dyke injection, new experimental evidence</title><title>Geophysical research letters</title><description>To reach the surface, dykes must overcome the inherent tensile strength of the country rock. As they do, they generate swarms of seismic signals, frequently used for forecasting. In this study we pressurize and inject molten acrylic into an encapsulating host rocks of (1) Etna basalt and (2) Comiso limestone, at 30 MPa of confining pressure. Fracture was achieved at 12 MPa for Etna basalt and 7.2 MPa for Comiso limestone. The generation of radial fractures was accompanied by acoustic emissions (AE) at a dominant frequency of 600 kHz. During “magma” movement in the dykes, AE events of approximately 150 kHz dominant frequency were recorded. We interpret our data using AE location and dominant frequency analysis, concluding that the seismicity associated with magma transport in dykes peaks during initial dyke creation but remains significant as long as magma movement continues. These results have important implications for seismic monitoring of active volcanoes.
Key Points
Hybrid‐analogue rock deformation experiments at PT using basalt and PMMA
AE monitoring the formation of tensile fractures and subsequent viscous fluid flow
Fracturing and fluid movement are characterized by different frequency spectra</description><subject>Acoustic emission</subject><subject>Basalt</subject><subject>Confining</subject><subject>deformation</subject><subject>Dikes</subject><subject>dyke formation</subject><subject>Dykes</subject><subject>Encapsulation</subject><subject>Forecasting</subject><subject>Fracture mechanics</subject><subject>Fractures</subject><subject>Frequency analysis</subject><subject>HPT experiments</subject><subject>Injection</subject><subject>Lava</subject><subject>Limestone</subject><subject>Magma</subject><subject>Monitoring</subject><subject>Movement</subject><subject>Pressure</subject><subject>Propagation</subject><subject>Rock</subject><subject>Rocks</subject><subject>Seismicity</subject><subject>Stone</subject><subject>Tensile strength</subject><subject>Transport</subject><subject>volcanic basement</subject><subject>Volcanoes</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0UtLAzEQAOAgCtbqzR8Q8OLB6kzSvI4iWsWCIHpe4u5EU7e7dbO19t8bqQfxIJ4yZD6GeTB2iHCKAOJMAKrJFLS2SmyxAbrxeGQBzDYbALgcC6N32V5KMwCQIHHAbh9eiC-6duGffR_bhvum4olimscy9mveBl6tX4nHZkblFzjhDa04fSyoi3Nqel9zeo8VNSXts53g60QH3--QPV5dPlxcj6Z3k5uL8-nIK2HUyHrrAoiSrNEi_2ghQhhX3klD-ERWo0QPwgORhRDQBkCnc1YFRVVQcsiON3Vz329LSn0xj6mkuvYNtctUoAUrtXXyfxS0cgYzPfpFZ-2ya_IgBTpEgWj0-E9ljEYrlLFZnWxU2bUpdRSKRd6W79YFQvF1quLnqTIXG76KNa3_tMXkfqqkc0p-AksCkcM</recordid><startdate>20160316</startdate><enddate>20160316</enddate><creator>Bakker, Richard R.</creator><creator>Fazio, Marco</creator><creator>Benson, Philip M.</creator><creator>Hess, Kai‐Uwe</creator><creator>Dingwell, Donald B.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20160316</creationdate><title>The propagation and seismicity of dyke injection, new experimental evidence</title><author>Bakker, Richard R. ; Fazio, Marco ; Benson, Philip M. ; Hess, Kai‐Uwe ; Dingwell, Donald B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5275-8a89f02ce8762527622ff4da937e1be86131a02a0ee80ff18f01969375f5edf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acoustic emission</topic><topic>Basalt</topic><topic>Confining</topic><topic>deformation</topic><topic>Dikes</topic><topic>dyke formation</topic><topic>Dykes</topic><topic>Encapsulation</topic><topic>Forecasting</topic><topic>Fracture mechanics</topic><topic>Fractures</topic><topic>Frequency analysis</topic><topic>HPT experiments</topic><topic>Injection</topic><topic>Lava</topic><topic>Limestone</topic><topic>Magma</topic><topic>Monitoring</topic><topic>Movement</topic><topic>Pressure</topic><topic>Propagation</topic><topic>Rock</topic><topic>Rocks</topic><topic>Seismicity</topic><topic>Stone</topic><topic>Tensile strength</topic><topic>Transport</topic><topic>volcanic basement</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakker, Richard R.</creatorcontrib><creatorcontrib>Fazio, Marco</creatorcontrib><creatorcontrib>Benson, Philip M.</creatorcontrib><creatorcontrib>Hess, Kai‐Uwe</creatorcontrib><creatorcontrib>Dingwell, Donald B.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakker, Richard R.</au><au>Fazio, Marco</au><au>Benson, Philip M.</au><au>Hess, Kai‐Uwe</au><au>Dingwell, Donald B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The propagation and seismicity of dyke injection, new experimental evidence</atitle><jtitle>Geophysical research letters</jtitle><date>2016-03-16</date><risdate>2016</risdate><volume>43</volume><issue>5</issue><spage>1876</spage><epage>1883</epage><pages>1876-1883</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>To reach the surface, dykes must overcome the inherent tensile strength of the country rock. As they do, they generate swarms of seismic signals, frequently used for forecasting. In this study we pressurize and inject molten acrylic into an encapsulating host rocks of (1) Etna basalt and (2) Comiso limestone, at 30 MPa of confining pressure. Fracture was achieved at 12 MPa for Etna basalt and 7.2 MPa for Comiso limestone. The generation of radial fractures was accompanied by acoustic emissions (AE) at a dominant frequency of 600 kHz. During “magma” movement in the dykes, AE events of approximately 150 kHz dominant frequency were recorded. We interpret our data using AE location and dominant frequency analysis, concluding that the seismicity associated with magma transport in dykes peaks during initial dyke creation but remains significant as long as magma movement continues. These results have important implications for seismic monitoring of active volcanoes.
Key Points
Hybrid‐analogue rock deformation experiments at PT using basalt and PMMA
AE monitoring the formation of tensile fractures and subsequent viscous fluid flow
Fracturing and fluid movement are characterized by different frequency spectra</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2015GL066852</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2016-03, Vol.43 (5), p.1876-1883 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808368935 |
source | Wiley Online Library; Wiley Online Library Journals Frontfile Complete; Wiley-Blackwell AGU Digital Archive; EZB-FREE-00999 freely available EZB journals |
subjects | Acoustic emission Basalt Confining deformation Dikes dyke formation Dykes Encapsulation Forecasting Fracture mechanics Fractures Frequency analysis HPT experiments Injection Lava Limestone Magma Monitoring Movement Pressure Propagation Rock Rocks Seismicity Stone Tensile strength Transport volcanic basement Volcanoes |
title | The propagation and seismicity of dyke injection, new experimental evidence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20propagation%20and%20seismicity%20of%20dyke%20injection,%20new%20experimental%20evidence&rft.jtitle=Geophysical%20research%20letters&rft.au=Bakker,%20Richard%20R.&rft.date=2016-03-16&rft.volume=43&rft.issue=5&rft.spage=1876&rft.epage=1883&rft.pages=1876-1883&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL066852&rft_dat=%3Cproquest_cross%3E1808368935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1776182578&rft_id=info:pmid/&rfr_iscdi=true |