A Lagrange-Galerkin hp-Finite Element Method for a 3D Nonhydrostatic Ocean Model

We introduce in this paper a Lagrange-Galerkin hp -finite element method to calculate the numerical solution of a nonhydrostatic ocean model. The Lagrange-Galerkin method yields a Stokes-like problem the solution of which is computed by a second-order rotational splitting scheme that separates the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pure and applied geophysics 2016-03, Vol.173 (3), p.885-907
Hauptverfasser: Galán del Sastre, Pedro, Bermejo, Rodolfo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 907
container_issue 3
container_start_page 885
container_title Pure and applied geophysics
container_volume 173
creator Galán del Sastre, Pedro
Bermejo, Rodolfo
description We introduce in this paper a Lagrange-Galerkin hp -finite element method to calculate the numerical solution of a nonhydrostatic ocean model. The Lagrange-Galerkin method yields a Stokes-like problem the solution of which is computed by a second-order rotational splitting scheme that separates the calculation of the velocity and pressure, the latter is decomposed into hydrostatic and nonhydrostatic components. We have tested the method in flows where the nonhydrostatic effects are important. The results are very encouraging.
doi_str_mv 10.1007/s00024-015-1185-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808368798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808368798</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-20c4e22e1961004cc69b093065c3afdf4b711ae1455d89092eacb487bdc77da53</originalsourceid><addsrcrecordid>eNqNkTFPwzAQhS0EEqXwA9gssbAY7uIktkcEtCAVygCz5ToXGkiTYqcD_x5XZUBISEy3vHv37n2MnSJcIIC6jACQ5QKwEIi6EHqPjTDPQBiU5T4bAUgp8qKQh-woxjcAVKowI_Z0xWfuNbjulcTUtRTem44v12LSdM1A_LalFXUDf6Bh2Ve87gN3XN7wx75bflahj4MbGs_nnlzHH_qK2mN2ULs20sn3HLOXye3z9Z2Yzaf311cz4WShBpGBzynLCE2Z8ufel2YBRkJZeOnqqs4XCtERpsiVNmAycn6Ra7WovFKVK-SYne9816H_2FAc7KqJntrWddRvokUNWpZaGf0fKeRGYapqzM5-Sd_6TejSIzYVJrE0Gra3cafyqYEYqLbr0Kxc-LQIdovD7nDYhMNucdhtiGy3E5M2tR1-OP-59AW9AooO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773169805</pqid></control><display><type>article</type><title>A Lagrange-Galerkin hp-Finite Element Method for a 3D Nonhydrostatic Ocean Model</title><source>SpringerLink (Online service)</source><creator>Galán del Sastre, Pedro ; Bermejo, Rodolfo</creator><creatorcontrib>Galán del Sastre, Pedro ; Bermejo, Rodolfo</creatorcontrib><description>We introduce in this paper a Lagrange-Galerkin hp -finite element method to calculate the numerical solution of a nonhydrostatic ocean model. The Lagrange-Galerkin method yields a Stokes-like problem the solution of which is computed by a second-order rotational splitting scheme that separates the calculation of the velocity and pressure, the latter is decomposed into hydrostatic and nonhydrostatic components. We have tested the method in flows where the nonhydrostatic effects are important. The results are very encouraging.</description><identifier>ISSN: 0033-4553</identifier><identifier>EISSN: 1420-9136</identifier><identifier>DOI: 10.1007/s00024-015-1185-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Decomposition ; Earth and Environmental Science ; Earth Sciences ; Finite element analysis ; Geophysics ; Geophysics/Geodesy ; Hydrostatics ; Mathematical models ; Ocean models ; Physical oceanography ; Rotational ; Splitting ; Three dimensional models</subject><ispartof>Pure and applied geophysics, 2016-03, Vol.173 (3), p.885-907</ispartof><rights>Springer Basel 2015</rights><rights>Springer International Publishing 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a357t-20c4e22e1961004cc69b093065c3afdf4b711ae1455d89092eacb487bdc77da53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00024-015-1185-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00024-015-1185-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Galán del Sastre, Pedro</creatorcontrib><creatorcontrib>Bermejo, Rodolfo</creatorcontrib><title>A Lagrange-Galerkin hp-Finite Element Method for a 3D Nonhydrostatic Ocean Model</title><title>Pure and applied geophysics</title><addtitle>Pure Appl. Geophys</addtitle><description>We introduce in this paper a Lagrange-Galerkin hp -finite element method to calculate the numerical solution of a nonhydrostatic ocean model. The Lagrange-Galerkin method yields a Stokes-like problem the solution of which is computed by a second-order rotational splitting scheme that separates the calculation of the velocity and pressure, the latter is decomposed into hydrostatic and nonhydrostatic components. We have tested the method in flows where the nonhydrostatic effects are important. The results are very encouraging.</description><subject>Decomposition</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Finite element analysis</subject><subject>Geophysics</subject><subject>Geophysics/Geodesy</subject><subject>Hydrostatics</subject><subject>Mathematical models</subject><subject>Ocean models</subject><subject>Physical oceanography</subject><subject>Rotational</subject><subject>Splitting</subject><subject>Three dimensional models</subject><issn>0033-4553</issn><issn>1420-9136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkTFPwzAQhS0EEqXwA9gssbAY7uIktkcEtCAVygCz5ToXGkiTYqcD_x5XZUBISEy3vHv37n2MnSJcIIC6jACQ5QKwEIi6EHqPjTDPQBiU5T4bAUgp8qKQh-woxjcAVKowI_Z0xWfuNbjulcTUtRTem44v12LSdM1A_LalFXUDf6Bh2Ve87gN3XN7wx75bflahj4MbGs_nnlzHH_qK2mN2ULs20sn3HLOXye3z9Z2Yzaf311cz4WShBpGBzynLCE2Z8ufel2YBRkJZeOnqqs4XCtERpsiVNmAycn6Ra7WovFKVK-SYne9816H_2FAc7KqJntrWddRvokUNWpZaGf0fKeRGYapqzM5-Sd_6TejSIzYVJrE0Gra3cafyqYEYqLbr0Kxc-LQIdovD7nDYhMNucdhtiGy3E5M2tR1-OP-59AW9AooO</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Galán del Sastre, Pedro</creator><creator>Bermejo, Rodolfo</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20160301</creationdate><title>A Lagrange-Galerkin hp-Finite Element Method for a 3D Nonhydrostatic Ocean Model</title><author>Galán del Sastre, Pedro ; Bermejo, Rodolfo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-20c4e22e1961004cc69b093065c3afdf4b711ae1455d89092eacb487bdc77da53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Decomposition</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Finite element analysis</topic><topic>Geophysics</topic><topic>Geophysics/Geodesy</topic><topic>Hydrostatics</topic><topic>Mathematical models</topic><topic>Ocean models</topic><topic>Physical oceanography</topic><topic>Rotational</topic><topic>Splitting</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galán del Sastre, Pedro</creatorcontrib><creatorcontrib>Bermejo, Rodolfo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Pure and applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galán del Sastre, Pedro</au><au>Bermejo, Rodolfo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lagrange-Galerkin hp-Finite Element Method for a 3D Nonhydrostatic Ocean Model</atitle><jtitle>Pure and applied geophysics</jtitle><stitle>Pure Appl. Geophys</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>173</volume><issue>3</issue><spage>885</spage><epage>907</epage><pages>885-907</pages><issn>0033-4553</issn><eissn>1420-9136</eissn><abstract>We introduce in this paper a Lagrange-Galerkin hp -finite element method to calculate the numerical solution of a nonhydrostatic ocean model. The Lagrange-Galerkin method yields a Stokes-like problem the solution of which is computed by a second-order rotational splitting scheme that separates the calculation of the velocity and pressure, the latter is decomposed into hydrostatic and nonhydrostatic components. We have tested the method in flows where the nonhydrostatic effects are important. The results are very encouraging.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00024-015-1185-8</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-4553
ispartof Pure and applied geophysics, 2016-03, Vol.173 (3), p.885-907
issn 0033-4553
1420-9136
language eng
recordid cdi_proquest_miscellaneous_1808368798
source SpringerLink (Online service)
subjects Decomposition
Earth and Environmental Science
Earth Sciences
Finite element analysis
Geophysics
Geophysics/Geodesy
Hydrostatics
Mathematical models
Ocean models
Physical oceanography
Rotational
Splitting
Three dimensional models
title A Lagrange-Galerkin hp-Finite Element Method for a 3D Nonhydrostatic Ocean Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lagrange-Galerkin%20hp-Finite%20Element%20Method%20for%20a%203D%20Nonhydrostatic%20Ocean%20Model&rft.jtitle=Pure%20and%20applied%20geophysics&rft.au=Gal%C3%A1n%20del%20Sastre,%20Pedro&rft.date=2016-03-01&rft.volume=173&rft.issue=3&rft.spage=885&rft.epage=907&rft.pages=885-907&rft.issn=0033-4553&rft.eissn=1420-9136&rft_id=info:doi/10.1007/s00024-015-1185-8&rft_dat=%3Cproquest_cross%3E1808368798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773169805&rft_id=info:pmid/&rfr_iscdi=true