A Southern Ocean mode of multidecadal variability
A 250 year simulation of a strongly eddying global version of the Parallel Ocean Program (POP) model reveals a new mode of intrinsic multidecadal variability, the Southern Ocean Mode (SOM), with a period of 40–50 year. The peak‐to‐peak difference in the global ocean heat content within a multidecada...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2016-03, Vol.43 (5), p.2102-2110 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2110 |
---|---|
container_issue | 5 |
container_start_page | 2102 |
container_title | Geophysical research letters |
container_volume | 43 |
creator | Le Bars, D. Viebahn, J. P. Dijkstra, H. A. |
description | A 250 year simulation of a strongly eddying global version of the Parallel Ocean Program (POP) model reveals a new mode of intrinsic multidecadal variability, the Southern Ocean Mode (SOM), with a period of 40–50 year. The peak‐to‐peak difference in the global ocean heat content within a multidecadal cycle is up to 60 ZJ. This change results from surface heat flux variations in the South Atlantic and propagation of temperature anomalies along the Antarctic Circumpolar Current and into the Weddell gyre around 30°E. The temperature anomalies propagate as deep as 5000 m along the isopycnals between 50°S and 30°S and induce multidecadal changes in the Atlantic Meridional Overturning Circulation. A positive feedback loop between the generation of eddies through baroclinic instability and the dynamics of the mean circulation is essential for the existence of the SOM. The dominant physics appears similar to that responsible for variability found in a three‐layer quasi‐geostrophic eddy‐resolving model. This combined with the fact that the SOM is not found in a noneddying version of the same global POP model further suggests that eddy processes are crucial for its existence and/or excitation.
Key Points
A new mode of internal ocean variability is identified in the Southern Ocean
It has an important impact on global ocean heat uptake
It depends on baroclinic instabilities from mesoscale eddies in the Antarctic Circumpolar Current |
doi_str_mv | 10.1002/2016GL068177 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808368645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4001062991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5049-fe79f11d3093d3594f430e789c6e2a995cf78d11a1bdde13fd7ffa0ce0d32e893</originalsourceid><addsrcrecordid>eNqN0UtLw0AUBeBBFKzVnT8g4MaF0XtnJvNYlqJVCBR8rIfpPDAlaWomUfrvjdSFuBBX5yw-LlwOIecI1whAbyigWJQgFEp5QCaoOc8VgDwkEwA9dirFMTlJaQ0ADBhOCM6yp3boX0O3yZYu2E3WtD5kbcyaoe4rH5z1ts7ebVfZVVVX_e6UHEVbp3D2nVPycnf7PL_Py-XiYT4rc1cA13kMUkdEz0AzzwrNI2cQpNJOBGq1LlyUyiNaXHkfkEUvY7TgAnhGg9JsSi73d7dd-zaE1JumSi7Utd2EdkgGFSgmlODFvygIyigf6cUvum6HbjM-YlAjUqRAiz-VlAIVLZCN6mqvXNem1IVotl3V2G5nEMzXIObnICOne_5R1WH3pzWLx7LgIDX7BAqHiFc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1776182513</pqid></control><display><type>article</type><title>A Southern Ocean mode of multidecadal variability</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Le Bars, D. ; Viebahn, J. P. ; Dijkstra, H. A.</creator><creatorcontrib>Le Bars, D. ; Viebahn, J. P. ; Dijkstra, H. A.</creatorcontrib><description>A 250 year simulation of a strongly eddying global version of the Parallel Ocean Program (POP) model reveals a new mode of intrinsic multidecadal variability, the Southern Ocean Mode (SOM), with a period of 40–50 year. The peak‐to‐peak difference in the global ocean heat content within a multidecadal cycle is up to 60 ZJ. This change results from surface heat flux variations in the South Atlantic and propagation of temperature anomalies along the Antarctic Circumpolar Current and into the Weddell gyre around 30°E. The temperature anomalies propagate as deep as 5000 m along the isopycnals between 50°S and 30°S and induce multidecadal changes in the Atlantic Meridional Overturning Circulation. A positive feedback loop between the generation of eddies through baroclinic instability and the dynamics of the mean circulation is essential for the existence of the SOM. The dominant physics appears similar to that responsible for variability found in a three‐layer quasi‐geostrophic eddy‐resolving model. This combined with the fact that the SOM is not found in a noneddying version of the same global POP model further suggests that eddy processes are crucial for its existence and/or excitation.
Key Points
A new mode of internal ocean variability is identified in the Southern Ocean
It has an important impact on global ocean heat uptake
It depends on baroclinic instabilities from mesoscale eddies in the Antarctic Circumpolar Current</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2016GL068177</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Anomalies ; Antarctic Circumpolar Current ; Antarctica ; Atlantic Meridional Overturning Circulation (AMOC) ; Baroclinic instability ; Circulation ; Computer simulation ; Dynamic stability ; Dynamics ; Eddies ; Enthalpy ; Excitation ; Feedback ; Geophysics ; Heat ; Heat content ; Heat flux ; Heat transfer ; Instability ; intrinsic variability ; Isopycnals ; Marine ; Meteorology ; mode of variability ; multidecadal variability ; Ocean circulation ; Ocean currents ; ocean heat content ; Oceans ; Physics ; Positive feedback ; Propagation ; Simulation ; Southern Ocean ; Temperature ; Temperature anomalies ; Temperature effects ; Variability ; Vortices</subject><ispartof>Geophysical research letters, 2016-03, Vol.43 (5), p.2102-2110</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5049-fe79f11d3093d3594f430e789c6e2a995cf78d11a1bdde13fd7ffa0ce0d32e893</citedby><cites>FETCH-LOGICAL-c5049-fe79f11d3093d3594f430e789c6e2a995cf78d11a1bdde13fd7ffa0ce0d32e893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016GL068177$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016GL068177$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Le Bars, D.</creatorcontrib><creatorcontrib>Viebahn, J. P.</creatorcontrib><creatorcontrib>Dijkstra, H. A.</creatorcontrib><title>A Southern Ocean mode of multidecadal variability</title><title>Geophysical research letters</title><description>A 250 year simulation of a strongly eddying global version of the Parallel Ocean Program (POP) model reveals a new mode of intrinsic multidecadal variability, the Southern Ocean Mode (SOM), with a period of 40–50 year. The peak‐to‐peak difference in the global ocean heat content within a multidecadal cycle is up to 60 ZJ. This change results from surface heat flux variations in the South Atlantic and propagation of temperature anomalies along the Antarctic Circumpolar Current and into the Weddell gyre around 30°E. The temperature anomalies propagate as deep as 5000 m along the isopycnals between 50°S and 30°S and induce multidecadal changes in the Atlantic Meridional Overturning Circulation. A positive feedback loop between the generation of eddies through baroclinic instability and the dynamics of the mean circulation is essential for the existence of the SOM. The dominant physics appears similar to that responsible for variability found in a three‐layer quasi‐geostrophic eddy‐resolving model. This combined with the fact that the SOM is not found in a noneddying version of the same global POP model further suggests that eddy processes are crucial for its existence and/or excitation.
Key Points
A new mode of internal ocean variability is identified in the Southern Ocean
It has an important impact on global ocean heat uptake
It depends on baroclinic instabilities from mesoscale eddies in the Antarctic Circumpolar Current</description><subject>Anomalies</subject><subject>Antarctic Circumpolar Current</subject><subject>Antarctica</subject><subject>Atlantic Meridional Overturning Circulation (AMOC)</subject><subject>Baroclinic instability</subject><subject>Circulation</subject><subject>Computer simulation</subject><subject>Dynamic stability</subject><subject>Dynamics</subject><subject>Eddies</subject><subject>Enthalpy</subject><subject>Excitation</subject><subject>Feedback</subject><subject>Geophysics</subject><subject>Heat</subject><subject>Heat content</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Instability</subject><subject>intrinsic variability</subject><subject>Isopycnals</subject><subject>Marine</subject><subject>Meteorology</subject><subject>mode of variability</subject><subject>multidecadal variability</subject><subject>Ocean circulation</subject><subject>Ocean currents</subject><subject>ocean heat content</subject><subject>Oceans</subject><subject>Physics</subject><subject>Positive feedback</subject><subject>Propagation</subject><subject>Simulation</subject><subject>Southern Ocean</subject><subject>Temperature</subject><subject>Temperature anomalies</subject><subject>Temperature effects</subject><subject>Variability</subject><subject>Vortices</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0UtLw0AUBeBBFKzVnT8g4MaF0XtnJvNYlqJVCBR8rIfpPDAlaWomUfrvjdSFuBBX5yw-LlwOIecI1whAbyigWJQgFEp5QCaoOc8VgDwkEwA9dirFMTlJaQ0ADBhOCM6yp3boX0O3yZYu2E3WtD5kbcyaoe4rH5z1ts7ebVfZVVVX_e6UHEVbp3D2nVPycnf7PL_Py-XiYT4rc1cA13kMUkdEz0AzzwrNI2cQpNJOBGq1LlyUyiNaXHkfkEUvY7TgAnhGg9JsSi73d7dd-zaE1JumSi7Utd2EdkgGFSgmlODFvygIyigf6cUvum6HbjM-YlAjUqRAiz-VlAIVLZCN6mqvXNem1IVotl3V2G5nEMzXIObnICOne_5R1WH3pzWLx7LgIDX7BAqHiFc</recordid><startdate>20160316</startdate><enddate>20160316</enddate><creator>Le Bars, D.</creator><creator>Viebahn, J. P.</creator><creator>Dijkstra, H. A.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20160316</creationdate><title>A Southern Ocean mode of multidecadal variability</title><author>Le Bars, D. ; Viebahn, J. P. ; Dijkstra, H. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5049-fe79f11d3093d3594f430e789c6e2a995cf78d11a1bdde13fd7ffa0ce0d32e893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anomalies</topic><topic>Antarctic Circumpolar Current</topic><topic>Antarctica</topic><topic>Atlantic Meridional Overturning Circulation (AMOC)</topic><topic>Baroclinic instability</topic><topic>Circulation</topic><topic>Computer simulation</topic><topic>Dynamic stability</topic><topic>Dynamics</topic><topic>Eddies</topic><topic>Enthalpy</topic><topic>Excitation</topic><topic>Feedback</topic><topic>Geophysics</topic><topic>Heat</topic><topic>Heat content</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Instability</topic><topic>intrinsic variability</topic><topic>Isopycnals</topic><topic>Marine</topic><topic>Meteorology</topic><topic>mode of variability</topic><topic>multidecadal variability</topic><topic>Ocean circulation</topic><topic>Ocean currents</topic><topic>ocean heat content</topic><topic>Oceans</topic><topic>Physics</topic><topic>Positive feedback</topic><topic>Propagation</topic><topic>Simulation</topic><topic>Southern Ocean</topic><topic>Temperature</topic><topic>Temperature anomalies</topic><topic>Temperature effects</topic><topic>Variability</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Bars, D.</creatorcontrib><creatorcontrib>Viebahn, J. P.</creatorcontrib><creatorcontrib>Dijkstra, H. A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Bars, D.</au><au>Viebahn, J. P.</au><au>Dijkstra, H. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Southern Ocean mode of multidecadal variability</atitle><jtitle>Geophysical research letters</jtitle><date>2016-03-16</date><risdate>2016</risdate><volume>43</volume><issue>5</issue><spage>2102</spage><epage>2110</epage><pages>2102-2110</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>A 250 year simulation of a strongly eddying global version of the Parallel Ocean Program (POP) model reveals a new mode of intrinsic multidecadal variability, the Southern Ocean Mode (SOM), with a period of 40–50 year. The peak‐to‐peak difference in the global ocean heat content within a multidecadal cycle is up to 60 ZJ. This change results from surface heat flux variations in the South Atlantic and propagation of temperature anomalies along the Antarctic Circumpolar Current and into the Weddell gyre around 30°E. The temperature anomalies propagate as deep as 5000 m along the isopycnals between 50°S and 30°S and induce multidecadal changes in the Atlantic Meridional Overturning Circulation. A positive feedback loop between the generation of eddies through baroclinic instability and the dynamics of the mean circulation is essential for the existence of the SOM. The dominant physics appears similar to that responsible for variability found in a three‐layer quasi‐geostrophic eddy‐resolving model. This combined with the fact that the SOM is not found in a noneddying version of the same global POP model further suggests that eddy processes are crucial for its existence and/or excitation.
Key Points
A new mode of internal ocean variability is identified in the Southern Ocean
It has an important impact on global ocean heat uptake
It depends on baroclinic instabilities from mesoscale eddies in the Antarctic Circumpolar Current</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2016GL068177</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2016-03, Vol.43 (5), p.2102-2110 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808368645 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Anomalies Antarctic Circumpolar Current Antarctica Atlantic Meridional Overturning Circulation (AMOC) Baroclinic instability Circulation Computer simulation Dynamic stability Dynamics Eddies Enthalpy Excitation Feedback Geophysics Heat Heat content Heat flux Heat transfer Instability intrinsic variability Isopycnals Marine Meteorology mode of variability multidecadal variability Ocean circulation Ocean currents ocean heat content Oceans Physics Positive feedback Propagation Simulation Southern Ocean Temperature Temperature anomalies Temperature effects Variability Vortices |
title | A Southern Ocean mode of multidecadal variability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Southern%20Ocean%20mode%20of%20multidecadal%20variability&rft.jtitle=Geophysical%20research%20letters&rft.au=Le%20Bars,%20D.&rft.date=2016-03-16&rft.volume=43&rft.issue=5&rft.spage=2102&rft.epage=2110&rft.pages=2102-2110&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2016GL068177&rft_dat=%3Cproquest_cross%3E4001062991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1776182513&rft_id=info:pmid/&rfr_iscdi=true |