A Southern Ocean mode of multidecadal variability

A 250 year simulation of a strongly eddying global version of the Parallel Ocean Program (POP) model reveals a new mode of intrinsic multidecadal variability, the Southern Ocean Mode (SOM), with a period of 40–50 year. The peak‐to‐peak difference in the global ocean heat content within a multidecada...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2016-03, Vol.43 (5), p.2102-2110
Hauptverfasser: Le Bars, D., Viebahn, J. P., Dijkstra, H. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2110
container_issue 5
container_start_page 2102
container_title Geophysical research letters
container_volume 43
creator Le Bars, D.
Viebahn, J. P.
Dijkstra, H. A.
description A 250 year simulation of a strongly eddying global version of the Parallel Ocean Program (POP) model reveals a new mode of intrinsic multidecadal variability, the Southern Ocean Mode (SOM), with a period of 40–50 year. The peak‐to‐peak difference in the global ocean heat content within a multidecadal cycle is up to 60 ZJ. This change results from surface heat flux variations in the South Atlantic and propagation of temperature anomalies along the Antarctic Circumpolar Current and into the Weddell gyre around 30°E. The temperature anomalies propagate as deep as 5000 m along the isopycnals between 50°S and 30°S and induce multidecadal changes in the Atlantic Meridional Overturning Circulation. A positive feedback loop between the generation of eddies through baroclinic instability and the dynamics of the mean circulation is essential for the existence of the SOM. The dominant physics appears similar to that responsible for variability found in a three‐layer quasi‐geostrophic eddy‐resolving model. This combined with the fact that the SOM is not found in a noneddying version of the same global POP model further suggests that eddy processes are crucial for its existence and/or excitation. Key Points A new mode of internal ocean variability is identified in the Southern Ocean It has an important impact on global ocean heat uptake It depends on baroclinic instabilities from mesoscale eddies in the Antarctic Circumpolar Current
doi_str_mv 10.1002/2016GL068177
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808368645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4001062991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5049-fe79f11d3093d3594f430e789c6e2a995cf78d11a1bdde13fd7ffa0ce0d32e893</originalsourceid><addsrcrecordid>eNqN0UtLw0AUBeBBFKzVnT8g4MaF0XtnJvNYlqJVCBR8rIfpPDAlaWomUfrvjdSFuBBX5yw-LlwOIecI1whAbyigWJQgFEp5QCaoOc8VgDwkEwA9dirFMTlJaQ0ADBhOCM6yp3boX0O3yZYu2E3WtD5kbcyaoe4rH5z1ts7ebVfZVVVX_e6UHEVbp3D2nVPycnf7PL_Py-XiYT4rc1cA13kMUkdEz0AzzwrNI2cQpNJOBGq1LlyUyiNaXHkfkEUvY7TgAnhGg9JsSi73d7dd-zaE1JumSi7Utd2EdkgGFSgmlODFvygIyigf6cUvum6HbjM-YlAjUqRAiz-VlAIVLZCN6mqvXNem1IVotl3V2G5nEMzXIObnICOne_5R1WH3pzWLx7LgIDX7BAqHiFc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1776182513</pqid></control><display><type>article</type><title>A Southern Ocean mode of multidecadal variability</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Le Bars, D. ; Viebahn, J. P. ; Dijkstra, H. A.</creator><creatorcontrib>Le Bars, D. ; Viebahn, J. P. ; Dijkstra, H. A.</creatorcontrib><description>A 250 year simulation of a strongly eddying global version of the Parallel Ocean Program (POP) model reveals a new mode of intrinsic multidecadal variability, the Southern Ocean Mode (SOM), with a period of 40–50 year. The peak‐to‐peak difference in the global ocean heat content within a multidecadal cycle is up to 60 ZJ. This change results from surface heat flux variations in the South Atlantic and propagation of temperature anomalies along the Antarctic Circumpolar Current and into the Weddell gyre around 30°E. The temperature anomalies propagate as deep as 5000 m along the isopycnals between 50°S and 30°S and induce multidecadal changes in the Atlantic Meridional Overturning Circulation. A positive feedback loop between the generation of eddies through baroclinic instability and the dynamics of the mean circulation is essential for the existence of the SOM. The dominant physics appears similar to that responsible for variability found in a three‐layer quasi‐geostrophic eddy‐resolving model. This combined with the fact that the SOM is not found in a noneddying version of the same global POP model further suggests that eddy processes are crucial for its existence and/or excitation. Key Points A new mode of internal ocean variability is identified in the Southern Ocean It has an important impact on global ocean heat uptake It depends on baroclinic instabilities from mesoscale eddies in the Antarctic Circumpolar Current</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2016GL068177</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Anomalies ; Antarctic Circumpolar Current ; Antarctica ; Atlantic Meridional Overturning Circulation (AMOC) ; Baroclinic instability ; Circulation ; Computer simulation ; Dynamic stability ; Dynamics ; Eddies ; Enthalpy ; Excitation ; Feedback ; Geophysics ; Heat ; Heat content ; Heat flux ; Heat transfer ; Instability ; intrinsic variability ; Isopycnals ; Marine ; Meteorology ; mode of variability ; multidecadal variability ; Ocean circulation ; Ocean currents ; ocean heat content ; Oceans ; Physics ; Positive feedback ; Propagation ; Simulation ; Southern Ocean ; Temperature ; Temperature anomalies ; Temperature effects ; Variability ; Vortices</subject><ispartof>Geophysical research letters, 2016-03, Vol.43 (5), p.2102-2110</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5049-fe79f11d3093d3594f430e789c6e2a995cf78d11a1bdde13fd7ffa0ce0d32e893</citedby><cites>FETCH-LOGICAL-c5049-fe79f11d3093d3594f430e789c6e2a995cf78d11a1bdde13fd7ffa0ce0d32e893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016GL068177$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016GL068177$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Le Bars, D.</creatorcontrib><creatorcontrib>Viebahn, J. P.</creatorcontrib><creatorcontrib>Dijkstra, H. A.</creatorcontrib><title>A Southern Ocean mode of multidecadal variability</title><title>Geophysical research letters</title><description>A 250 year simulation of a strongly eddying global version of the Parallel Ocean Program (POP) model reveals a new mode of intrinsic multidecadal variability, the Southern Ocean Mode (SOM), with a period of 40–50 year. The peak‐to‐peak difference in the global ocean heat content within a multidecadal cycle is up to 60 ZJ. This change results from surface heat flux variations in the South Atlantic and propagation of temperature anomalies along the Antarctic Circumpolar Current and into the Weddell gyre around 30°E. The temperature anomalies propagate as deep as 5000 m along the isopycnals between 50°S and 30°S and induce multidecadal changes in the Atlantic Meridional Overturning Circulation. A positive feedback loop between the generation of eddies through baroclinic instability and the dynamics of the mean circulation is essential for the existence of the SOM. The dominant physics appears similar to that responsible for variability found in a three‐layer quasi‐geostrophic eddy‐resolving model. This combined with the fact that the SOM is not found in a noneddying version of the same global POP model further suggests that eddy processes are crucial for its existence and/or excitation. Key Points A new mode of internal ocean variability is identified in the Southern Ocean It has an important impact on global ocean heat uptake It depends on baroclinic instabilities from mesoscale eddies in the Antarctic Circumpolar Current</description><subject>Anomalies</subject><subject>Antarctic Circumpolar Current</subject><subject>Antarctica</subject><subject>Atlantic Meridional Overturning Circulation (AMOC)</subject><subject>Baroclinic instability</subject><subject>Circulation</subject><subject>Computer simulation</subject><subject>Dynamic stability</subject><subject>Dynamics</subject><subject>Eddies</subject><subject>Enthalpy</subject><subject>Excitation</subject><subject>Feedback</subject><subject>Geophysics</subject><subject>Heat</subject><subject>Heat content</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Instability</subject><subject>intrinsic variability</subject><subject>Isopycnals</subject><subject>Marine</subject><subject>Meteorology</subject><subject>mode of variability</subject><subject>multidecadal variability</subject><subject>Ocean circulation</subject><subject>Ocean currents</subject><subject>ocean heat content</subject><subject>Oceans</subject><subject>Physics</subject><subject>Positive feedback</subject><subject>Propagation</subject><subject>Simulation</subject><subject>Southern Ocean</subject><subject>Temperature</subject><subject>Temperature anomalies</subject><subject>Temperature effects</subject><subject>Variability</subject><subject>Vortices</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0UtLw0AUBeBBFKzVnT8g4MaF0XtnJvNYlqJVCBR8rIfpPDAlaWomUfrvjdSFuBBX5yw-LlwOIecI1whAbyigWJQgFEp5QCaoOc8VgDwkEwA9dirFMTlJaQ0ADBhOCM6yp3boX0O3yZYu2E3WtD5kbcyaoe4rH5z1ts7ebVfZVVVX_e6UHEVbp3D2nVPycnf7PL_Py-XiYT4rc1cA13kMUkdEz0AzzwrNI2cQpNJOBGq1LlyUyiNaXHkfkEUvY7TgAnhGg9JsSi73d7dd-zaE1JumSi7Utd2EdkgGFSgmlODFvygIyigf6cUvum6HbjM-YlAjUqRAiz-VlAIVLZCN6mqvXNem1IVotl3V2G5nEMzXIObnICOne_5R1WH3pzWLx7LgIDX7BAqHiFc</recordid><startdate>20160316</startdate><enddate>20160316</enddate><creator>Le Bars, D.</creator><creator>Viebahn, J. P.</creator><creator>Dijkstra, H. A.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20160316</creationdate><title>A Southern Ocean mode of multidecadal variability</title><author>Le Bars, D. ; Viebahn, J. P. ; Dijkstra, H. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5049-fe79f11d3093d3594f430e789c6e2a995cf78d11a1bdde13fd7ffa0ce0d32e893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anomalies</topic><topic>Antarctic Circumpolar Current</topic><topic>Antarctica</topic><topic>Atlantic Meridional Overturning Circulation (AMOC)</topic><topic>Baroclinic instability</topic><topic>Circulation</topic><topic>Computer simulation</topic><topic>Dynamic stability</topic><topic>Dynamics</topic><topic>Eddies</topic><topic>Enthalpy</topic><topic>Excitation</topic><topic>Feedback</topic><topic>Geophysics</topic><topic>Heat</topic><topic>Heat content</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Instability</topic><topic>intrinsic variability</topic><topic>Isopycnals</topic><topic>Marine</topic><topic>Meteorology</topic><topic>mode of variability</topic><topic>multidecadal variability</topic><topic>Ocean circulation</topic><topic>Ocean currents</topic><topic>ocean heat content</topic><topic>Oceans</topic><topic>Physics</topic><topic>Positive feedback</topic><topic>Propagation</topic><topic>Simulation</topic><topic>Southern Ocean</topic><topic>Temperature</topic><topic>Temperature anomalies</topic><topic>Temperature effects</topic><topic>Variability</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Bars, D.</creatorcontrib><creatorcontrib>Viebahn, J. P.</creatorcontrib><creatorcontrib>Dijkstra, H. A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Bars, D.</au><au>Viebahn, J. P.</au><au>Dijkstra, H. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Southern Ocean mode of multidecadal variability</atitle><jtitle>Geophysical research letters</jtitle><date>2016-03-16</date><risdate>2016</risdate><volume>43</volume><issue>5</issue><spage>2102</spage><epage>2110</epage><pages>2102-2110</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>A 250 year simulation of a strongly eddying global version of the Parallel Ocean Program (POP) model reveals a new mode of intrinsic multidecadal variability, the Southern Ocean Mode (SOM), with a period of 40–50 year. The peak‐to‐peak difference in the global ocean heat content within a multidecadal cycle is up to 60 ZJ. This change results from surface heat flux variations in the South Atlantic and propagation of temperature anomalies along the Antarctic Circumpolar Current and into the Weddell gyre around 30°E. The temperature anomalies propagate as deep as 5000 m along the isopycnals between 50°S and 30°S and induce multidecadal changes in the Atlantic Meridional Overturning Circulation. A positive feedback loop between the generation of eddies through baroclinic instability and the dynamics of the mean circulation is essential for the existence of the SOM. The dominant physics appears similar to that responsible for variability found in a three‐layer quasi‐geostrophic eddy‐resolving model. This combined with the fact that the SOM is not found in a noneddying version of the same global POP model further suggests that eddy processes are crucial for its existence and/or excitation. Key Points A new mode of internal ocean variability is identified in the Southern Ocean It has an important impact on global ocean heat uptake It depends on baroclinic instabilities from mesoscale eddies in the Antarctic Circumpolar Current</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2016GL068177</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2016-03, Vol.43 (5), p.2102-2110
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1808368645
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects Anomalies
Antarctic Circumpolar Current
Antarctica
Atlantic Meridional Overturning Circulation (AMOC)
Baroclinic instability
Circulation
Computer simulation
Dynamic stability
Dynamics
Eddies
Enthalpy
Excitation
Feedback
Geophysics
Heat
Heat content
Heat flux
Heat transfer
Instability
intrinsic variability
Isopycnals
Marine
Meteorology
mode of variability
multidecadal variability
Ocean circulation
Ocean currents
ocean heat content
Oceans
Physics
Positive feedback
Propagation
Simulation
Southern Ocean
Temperature
Temperature anomalies
Temperature effects
Variability
Vortices
title A Southern Ocean mode of multidecadal variability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Southern%20Ocean%20mode%20of%20multidecadal%20variability&rft.jtitle=Geophysical%20research%20letters&rft.au=Le%20Bars,%20D.&rft.date=2016-03-16&rft.volume=43&rft.issue=5&rft.spage=2102&rft.epage=2110&rft.pages=2102-2110&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2016GL068177&rft_dat=%3Cproquest_cross%3E4001062991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1776182513&rft_id=info:pmid/&rfr_iscdi=true