Merwinite-structured phases as a potential host of alkalis in the upper mantle
Two previously unknown Na- and K-rich phases were synthesized near the solidus of the model CMAS lherzolite interacted with the CaCO 3 + Na 2 CO 3 + KCl melt at 7 GPa. They coexist with forsterite, garnet and chloride–carbonate melt. Stoichiometry and unit-cell parameters measured by means of powd...
Gespeichert in:
Veröffentlicht in: | Contributions to mineralogy and petrology 2015-08, Vol.170 (2), p.2385-11, Article 14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2 |
container_start_page | 2385 |
container_title | Contributions to mineralogy and petrology |
container_volume | 170 |
creator | Bindi, Luca Safonov, Oleg G. Zedgenizov, Dmitriy A. |
description | Two previously unknown Na- and K-rich phases were synthesized near the solidus of the model CMAS lherzolite interacted with the CaCO
3
+ Na
2
CO
3
+ KCl melt at 7 GPa. They coexist with forsterite, garnet and chloride–carbonate melt. Stoichiometry and unit-cell parameters measured by means of powder diffraction indicate that one of the phases corresponds to (K,Na)
2
Ca
4
Mg
2
Si
4
O
15
(with about 0.1 a.p.f.u. Al). Although single-crystal X-ray measurements of this phase did not allow the solution of the crystal structure, we suggest that the structure of this phase includes mixed SiO
4
and Si
2
O
7
units. Single-crystal diffraction experiments of the other alkali-rich phase with composition (Ca
2.06
Na
0.86
K
0.08
)
Σ=3.00
(Mg
0.53
Si
0.45
Al
0.03
)
Σ=1.01
Si
2.00
O
8
showed that it exhibits the merwinite structure, space group
P
2
1
/
a
, with lattice parameters
a
= 12.987(2),
b
= 5.101(1),
c
= 9.130(2) Å,
β
= 92.36(1)°,
V
= 604.3(2) Å
3
, and
Z
= 4. The structure was refined to
R
1
= 0.031 using 2619 independent reflections. In the structure, Na is hosted at the large Ca sites, whereas Si replaces Mg at the octahedral site and occurs in the usual tetrahedral coordination. Ordering-induced distortion provokes a change in coordination of the (Ca, Na) atoms with respect to pure merwinite. Merwinite phases with lower K + Na contents (0.08–0.18 a.p.f.u.) coexist with forsterite, clinopyroxene and immiscible carbonate–chloride and silicate melts at higher temperatures (up to 1510 °C) at 7 and 5.5 GPa. These phases (including alkali-rich ones at solidus) show a general formula [Ca
3−2
x
(Na,K)
2
x
][Mg
1−
x
Si
x
]Si
2
O
8
(with
x
up to 0.45), where the Na + K content negatively correlates with Ca and positively correlates with Si. The present experimental and crystal-chemical data prove that merwinite-structured phases may be efficient hosts for alkalis in the upper mantle. They are mineralogical indicators of either the interaction of mantle peridotites with alkaline carbonatitic liquids or high-pressure crystallization of silica-undersaturated CaO and alkali-rich melts. |
doi_str_mv | 10.1007/s00410-015-1173-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808368367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A423693932</galeid><sourcerecordid>A423693932</sourcerecordid><originalsourceid>FETCH-LOGICAL-a543t-d17b2da946a12ccaf65f2e05de303f05ada26d8c049be060c77e01a5c1954713</originalsourceid><addsrcrecordid>eNp1kU2PFCEQhonRxHH1B3gj8eKldwvohuG42fiVrHrZO6mlq2dYGboFOsZ_L5Mx0TVjqIQAz1MBXsZeC7gUAOaqAPQCOhBDJ4RRHTxhG9Er2YHV5inbALRTY619zl6U8gBtvbXDhn35TPlHSKFSV2pefV0zjXzZY6HCsRVf5kqpBox8P5fK54lj_IYxFB4Sr3vi67JQ5gdMNdJL9mzCWOjV7_mC3b1_d3fzsbv9-uHTzfVth0OvajcKcy9HtL1GIb3HSQ-TJBhGUqAmGHBEqceth97eE2jwxhAIHLywQ2-EumBvT22XPH9fqVR3CMVTjJhoXosTW9gq3co09M0_6MO85tQu54Rp36ClHfQfaoeRXEjTXDP6Y1N33UulrbJKNqo7Q-0oUcY4J5pC237EX57h2xjpEPxZQZwEn-dSMk1uyeGA-acT4I45u1POruXsjjk7aI48OaWxaUf5rwf-V_oFmq6n1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700062956</pqid></control><display><type>article</type><title>Merwinite-structured phases as a potential host of alkalis in the upper mantle</title><source>Springer Nature - Complete Springer Journals</source><creator>Bindi, Luca ; Safonov, Oleg G. ; Zedgenizov, Dmitriy A.</creator><creatorcontrib>Bindi, Luca ; Safonov, Oleg G. ; Zedgenizov, Dmitriy A.</creatorcontrib><description>Two previously unknown Na- and K-rich phases were synthesized near the solidus of the model CMAS lherzolite interacted with the CaCO
3
+ Na
2
CO
3
+ KCl melt at 7 GPa. They coexist with forsterite, garnet and chloride–carbonate melt. Stoichiometry and unit-cell parameters measured by means of powder diffraction indicate that one of the phases corresponds to (K,Na)
2
Ca
4
Mg
2
Si
4
O
15
(with about 0.1 a.p.f.u. Al). Although single-crystal X-ray measurements of this phase did not allow the solution of the crystal structure, we suggest that the structure of this phase includes mixed SiO
4
and Si
2
O
7
units. Single-crystal diffraction experiments of the other alkali-rich phase with composition (Ca
2.06
Na
0.86
K
0.08
)
Σ=3.00
(Mg
0.53
Si
0.45
Al
0.03
)
Σ=1.01
Si
2.00
O
8
showed that it exhibits the merwinite structure, space group
P
2
1
/
a
, with lattice parameters
a
= 12.987(2),
b
= 5.101(1),
c
= 9.130(2) Å,
β
= 92.36(1)°,
V
= 604.3(2) Å
3
, and
Z
= 4. The structure was refined to
R
1
= 0.031 using 2619 independent reflections. In the structure, Na is hosted at the large Ca sites, whereas Si replaces Mg at the octahedral site and occurs in the usual tetrahedral coordination. Ordering-induced distortion provokes a change in coordination of the (Ca, Na) atoms with respect to pure merwinite. Merwinite phases with lower K + Na contents (0.08–0.18 a.p.f.u.) coexist with forsterite, clinopyroxene and immiscible carbonate–chloride and silicate melts at higher temperatures (up to 1510 °C) at 7 and 5.5 GPa. These phases (including alkali-rich ones at solidus) show a general formula [Ca
3−2
x
(Na,K)
2
x
][Mg
1−
x
Si
x
]Si
2
O
8
(with
x
up to 0.45), where the Na + K content negatively correlates with Ca and positively correlates with Si. The present experimental and crystal-chemical data prove that merwinite-structured phases may be efficient hosts for alkalis in the upper mantle. They are mineralogical indicators of either the interaction of mantle peridotites with alkaline carbonatitic liquids or high-pressure crystallization of silica-undersaturated CaO and alkali-rich melts.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-015-1173-0</identifier><identifier>CODEN: CMPEAP</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alkalies ; Analysis ; Carbonates ; Crystal structure ; Crystallization ; Crystals ; Diffraction ; Earth ; Earth and Environmental Science ; Earth Sciences ; Geology ; High temperature ; Mantle ; Mineral Resources ; Mineralogy ; Original Paper ; Petrology ; Silica ; Silicates ; Structure ; Upper mantle ; X-rays</subject><ispartof>Contributions to mineralogy and petrology, 2015-08, Vol.170 (2), p.2385-11, Article 14</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a543t-d17b2da946a12ccaf65f2e05de303f05ada26d8c049be060c77e01a5c1954713</citedby><cites>FETCH-LOGICAL-a543t-d17b2da946a12ccaf65f2e05de303f05ada26d8c049be060c77e01a5c1954713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-015-1173-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-015-1173-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Bindi, Luca</creatorcontrib><creatorcontrib>Safonov, Oleg G.</creatorcontrib><creatorcontrib>Zedgenizov, Dmitriy A.</creatorcontrib><title>Merwinite-structured phases as a potential host of alkalis in the upper mantle</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>Two previously unknown Na- and K-rich phases were synthesized near the solidus of the model CMAS lherzolite interacted with the CaCO
3
+ Na
2
CO
3
+ KCl melt at 7 GPa. They coexist with forsterite, garnet and chloride–carbonate melt. Stoichiometry and unit-cell parameters measured by means of powder diffraction indicate that one of the phases corresponds to (K,Na)
2
Ca
4
Mg
2
Si
4
O
15
(with about 0.1 a.p.f.u. Al). Although single-crystal X-ray measurements of this phase did not allow the solution of the crystal structure, we suggest that the structure of this phase includes mixed SiO
4
and Si
2
O
7
units. Single-crystal diffraction experiments of the other alkali-rich phase with composition (Ca
2.06
Na
0.86
K
0.08
)
Σ=3.00
(Mg
0.53
Si
0.45
Al
0.03
)
Σ=1.01
Si
2.00
O
8
showed that it exhibits the merwinite structure, space group
P
2
1
/
a
, with lattice parameters
a
= 12.987(2),
b
= 5.101(1),
c
= 9.130(2) Å,
β
= 92.36(1)°,
V
= 604.3(2) Å
3
, and
Z
= 4. The structure was refined to
R
1
= 0.031 using 2619 independent reflections. In the structure, Na is hosted at the large Ca sites, whereas Si replaces Mg at the octahedral site and occurs in the usual tetrahedral coordination. Ordering-induced distortion provokes a change in coordination of the (Ca, Na) atoms with respect to pure merwinite. Merwinite phases with lower K + Na contents (0.08–0.18 a.p.f.u.) coexist with forsterite, clinopyroxene and immiscible carbonate–chloride and silicate melts at higher temperatures (up to 1510 °C) at 7 and 5.5 GPa. These phases (including alkali-rich ones at solidus) show a general formula [Ca
3−2
x
(Na,K)
2
x
][Mg
1−
x
Si
x
]Si
2
O
8
(with
x
up to 0.45), where the Na + K content negatively correlates with Ca and positively correlates with Si. The present experimental and crystal-chemical data prove that merwinite-structured phases may be efficient hosts for alkalis in the upper mantle. They are mineralogical indicators of either the interaction of mantle peridotites with alkaline carbonatitic liquids or high-pressure crystallization of silica-undersaturated CaO and alkali-rich melts.</description><subject>Alkalies</subject><subject>Analysis</subject><subject>Carbonates</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Diffraction</subject><subject>Earth</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geology</subject><subject>High temperature</subject><subject>Mantle</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Original Paper</subject><subject>Petrology</subject><subject>Silica</subject><subject>Silicates</subject><subject>Structure</subject><subject>Upper mantle</subject><subject>X-rays</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU2PFCEQhonRxHH1B3gj8eKldwvohuG42fiVrHrZO6mlq2dYGboFOsZ_L5Mx0TVjqIQAz1MBXsZeC7gUAOaqAPQCOhBDJ4RRHTxhG9Er2YHV5inbALRTY619zl6U8gBtvbXDhn35TPlHSKFSV2pefV0zjXzZY6HCsRVf5kqpBox8P5fK54lj_IYxFB4Sr3vi67JQ5gdMNdJL9mzCWOjV7_mC3b1_d3fzsbv9-uHTzfVth0OvajcKcy9HtL1GIb3HSQ-TJBhGUqAmGHBEqceth97eE2jwxhAIHLywQ2-EumBvT22XPH9fqVR3CMVTjJhoXosTW9gq3co09M0_6MO85tQu54Rp36ClHfQfaoeRXEjTXDP6Y1N33UulrbJKNqo7Q-0oUcY4J5pC237EX57h2xjpEPxZQZwEn-dSMk1uyeGA-acT4I45u1POruXsjjk7aI48OaWxaUf5rwf-V_oFmq6n1g</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Bindi, Luca</creator><creator>Safonov, Oleg G.</creator><creator>Zedgenizov, Dmitriy A.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20150801</creationdate><title>Merwinite-structured phases as a potential host of alkalis in the upper mantle</title><author>Bindi, Luca ; Safonov, Oleg G. ; Zedgenizov, Dmitriy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a543t-d17b2da946a12ccaf65f2e05de303f05ada26d8c049be060c77e01a5c1954713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alkalies</topic><topic>Analysis</topic><topic>Carbonates</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Diffraction</topic><topic>Earth</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geology</topic><topic>High temperature</topic><topic>Mantle</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Original Paper</topic><topic>Petrology</topic><topic>Silica</topic><topic>Silicates</topic><topic>Structure</topic><topic>Upper mantle</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bindi, Luca</creatorcontrib><creatorcontrib>Safonov, Oleg G.</creatorcontrib><creatorcontrib>Zedgenizov, Dmitriy A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bindi, Luca</au><au>Safonov, Oleg G.</au><au>Zedgenizov, Dmitriy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Merwinite-structured phases as a potential host of alkalis in the upper mantle</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>170</volume><issue>2</issue><spage>2385</spage><epage>11</epage><pages>2385-11</pages><artnum>14</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><coden>CMPEAP</coden><abstract>Two previously unknown Na- and K-rich phases were synthesized near the solidus of the model CMAS lherzolite interacted with the CaCO
3
+ Na
2
CO
3
+ KCl melt at 7 GPa. They coexist with forsterite, garnet and chloride–carbonate melt. Stoichiometry and unit-cell parameters measured by means of powder diffraction indicate that one of the phases corresponds to (K,Na)
2
Ca
4
Mg
2
Si
4
O
15
(with about 0.1 a.p.f.u. Al). Although single-crystal X-ray measurements of this phase did not allow the solution of the crystal structure, we suggest that the structure of this phase includes mixed SiO
4
and Si
2
O
7
units. Single-crystal diffraction experiments of the other alkali-rich phase with composition (Ca
2.06
Na
0.86
K
0.08
)
Σ=3.00
(Mg
0.53
Si
0.45
Al
0.03
)
Σ=1.01
Si
2.00
O
8
showed that it exhibits the merwinite structure, space group
P
2
1
/
a
, with lattice parameters
a
= 12.987(2),
b
= 5.101(1),
c
= 9.130(2) Å,
β
= 92.36(1)°,
V
= 604.3(2) Å
3
, and
Z
= 4. The structure was refined to
R
1
= 0.031 using 2619 independent reflections. In the structure, Na is hosted at the large Ca sites, whereas Si replaces Mg at the octahedral site and occurs in the usual tetrahedral coordination. Ordering-induced distortion provokes a change in coordination of the (Ca, Na) atoms with respect to pure merwinite. Merwinite phases with lower K + Na contents (0.08–0.18 a.p.f.u.) coexist with forsterite, clinopyroxene and immiscible carbonate–chloride and silicate melts at higher temperatures (up to 1510 °C) at 7 and 5.5 GPa. These phases (including alkali-rich ones at solidus) show a general formula [Ca
3−2
x
(Na,K)
2
x
][Mg
1−
x
Si
x
]Si
2
O
8
(with
x
up to 0.45), where the Na + K content negatively correlates with Ca and positively correlates with Si. The present experimental and crystal-chemical data prove that merwinite-structured phases may be efficient hosts for alkalis in the upper mantle. They are mineralogical indicators of either the interaction of mantle peridotites with alkaline carbonatitic liquids or high-pressure crystallization of silica-undersaturated CaO and alkali-rich melts.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00410-015-1173-0</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-7999 |
ispartof | Contributions to mineralogy and petrology, 2015-08, Vol.170 (2), p.2385-11, Article 14 |
issn | 0010-7999 1432-0967 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808368367 |
source | Springer Nature - Complete Springer Journals |
subjects | Alkalies Analysis Carbonates Crystal structure Crystallization Crystals Diffraction Earth Earth and Environmental Science Earth Sciences Geology High temperature Mantle Mineral Resources Mineralogy Original Paper Petrology Silica Silicates Structure Upper mantle X-rays |
title | Merwinite-structured phases as a potential host of alkalis in the upper mantle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Merwinite-structured%20phases%20as%20a%20potential%20host%20of%20alkalis%20in%20the%20upper%20mantle&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Bindi,%20Luca&rft.date=2015-08-01&rft.volume=170&rft.issue=2&rft.spage=2385&rft.epage=11&rft.pages=2385-11&rft.artnum=14&rft.issn=0010-7999&rft.eissn=1432-0967&rft.coden=CMPEAP&rft_id=info:doi/10.1007/s00410-015-1173-0&rft_dat=%3Cgale_proqu%3EA423693932%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700062956&rft_id=info:pmid/&rft_galeid=A423693932&rfr_iscdi=true |