Non-stationary approach to at-site flood frequency modelling I. Maximum likelihood estimation
For dealing with hydrological non-stationarity in flood frequency modelling (FFM) and hydrological design, it is necessary to account for trends. Taking the case of at-site FFM, statistical parametric techniques are discussed for investigation of the time-trend. The investigation entails (1) an iden...
Gespeichert in:
Veröffentlicht in: | Journal of hydrology (Amsterdam) 2001-07, Vol.248 (1), p.123-142 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 142 |
---|---|
container_issue | 1 |
container_start_page | 123 |
container_title | Journal of hydrology (Amsterdam) |
container_volume | 248 |
creator | Strupczewski, W.G. Singh, V.P. Feluch, W. |
description | For dealing with hydrological non-stationarity in flood frequency modelling (FFM) and hydrological design, it is necessary to account for trends. Taking the case of at-site FFM, statistical parametric techniques are discussed for investigation of the time-trend. The investigation entails (1) an identification of a probability distribution, and (2) development of a trend software. The Akaike Information Criterion (AIC) was used to identify the optimum distribution, i.e. the distribution and trend function, which enabled an identification of the optimum non-stationary FFM in a class of 56 competing models. The maximum likelihood (ML) method was used to estimate the parameters of the identified model using annual peak discharge series. A trend can be assumed in the first two moments of a probability distribution function and it can be of either linear or parabolic form. Both the annual maximum series (AMS) and partial duration series (PDS) approach were considered in the at-site frequency modeling. |
doi_str_mv | 10.1016/S0022-1694(01)00397-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18082899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169401003973</els_id><sourcerecordid>18082899</sourcerecordid><originalsourceid>FETCH-LOGICAL-a467t-7ed22846c20666b2a8e15e6181e3d718d067dca75ae7b83fe05e47d5e59bd7543</originalsourceid><addsrcrecordid>eNqFkMFu1DAQQC0EEkvhExC-gOghZewktnNCqIJSqcCh9IisWXvSGpJ4sb2I_Xu8uxUc8WUub8ZPj7HnAs4ECPXmGkDKRqihew3iFKAddNM-YCth9NBIDfohW_1FHrMnOX-H-tq2W7Fvn-PS5IIlxAXTjuNmkyK6O14ix9LkUIiPU4yej4l-bmlxOz5HT9MUllt-ecY_4e8wb2c-hR80hbs9SbmE-XDxKXs04pTp2f08YTcf3n89_9hcfbm4PH931WCndGk0eSlNp5wEpdRaoiHRkxJGUOu1MB6U9g51j6TXph0Jeuq076kf1l73XXvCXh3vVvkqmYudQ3ZVEheK22yFASPNMFSwP4IuxZwTjXaTqmvaWQF2H9MeYtp9KQvCHmLatu69vP8As8NpTLi4kP8tdzAoJfYiL47ciNHibarMzbWsdwFElTgQb48E1R6_AiWbXahZyYdErlgfw39c_gA61pKO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18082899</pqid></control><display><type>article</type><title>Non-stationary approach to at-site flood frequency modelling I. Maximum likelihood estimation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Strupczewski, W.G. ; Singh, V.P. ; Feluch, W.</creator><creatorcontrib>Strupczewski, W.G. ; Singh, V.P. ; Feluch, W.</creatorcontrib><description>For dealing with hydrological non-stationarity in flood frequency modelling (FFM) and hydrological design, it is necessary to account for trends. Taking the case of at-site FFM, statistical parametric techniques are discussed for investigation of the time-trend. The investigation entails (1) an identification of a probability distribution, and (2) development of a trend software. The Akaike Information Criterion (AIC) was used to identify the optimum distribution, i.e. the distribution and trend function, which enabled an identification of the optimum non-stationary FFM in a class of 56 competing models. The maximum likelihood (ML) method was used to estimate the parameters of the identified model using annual peak discharge series. A trend can be assumed in the first two moments of a probability distribution function and it can be of either linear or parabolic form. Both the annual maximum series (AMS) and partial duration series (PDS) approach were considered in the at-site frequency modeling.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/S0022-1694(01)00397-3</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>computer software ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Flood ; Frequency ; Hydrology ; Hydrology. Hydrogeology ; Natural hazards: prediction, damages, etc ; Partial duration series ; probability distribution ; Time series ; Trend</subject><ispartof>Journal of hydrology (Amsterdam), 2001-07, Vol.248 (1), p.123-142</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a467t-7ed22846c20666b2a8e15e6181e3d718d067dca75ae7b83fe05e47d5e59bd7543</citedby><cites>FETCH-LOGICAL-a467t-7ed22846c20666b2a8e15e6181e3d718d067dca75ae7b83fe05e47d5e59bd7543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0022-1694(01)00397-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14096614$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Strupczewski, W.G.</creatorcontrib><creatorcontrib>Singh, V.P.</creatorcontrib><creatorcontrib>Feluch, W.</creatorcontrib><title>Non-stationary approach to at-site flood frequency modelling I. Maximum likelihood estimation</title><title>Journal of hydrology (Amsterdam)</title><description>For dealing with hydrological non-stationarity in flood frequency modelling (FFM) and hydrological design, it is necessary to account for trends. Taking the case of at-site FFM, statistical parametric techniques are discussed for investigation of the time-trend. The investigation entails (1) an identification of a probability distribution, and (2) development of a trend software. The Akaike Information Criterion (AIC) was used to identify the optimum distribution, i.e. the distribution and trend function, which enabled an identification of the optimum non-stationary FFM in a class of 56 competing models. The maximum likelihood (ML) method was used to estimate the parameters of the identified model using annual peak discharge series. A trend can be assumed in the first two moments of a probability distribution function and it can be of either linear or parabolic form. Both the annual maximum series (AMS) and partial duration series (PDS) approach were considered in the at-site frequency modeling.</description><subject>computer software</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Flood</subject><subject>Frequency</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Natural hazards: prediction, damages, etc</subject><subject>Partial duration series</subject><subject>probability distribution</subject><subject>Time series</subject><subject>Trend</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu1DAQQC0EEkvhExC-gOghZewktnNCqIJSqcCh9IisWXvSGpJ4sb2I_Xu8uxUc8WUub8ZPj7HnAs4ECPXmGkDKRqihew3iFKAddNM-YCth9NBIDfohW_1FHrMnOX-H-tq2W7Fvn-PS5IIlxAXTjuNmkyK6O14ix9LkUIiPU4yej4l-bmlxOz5HT9MUllt-ecY_4e8wb2c-hR80hbs9SbmE-XDxKXs04pTp2f08YTcf3n89_9hcfbm4PH931WCndGk0eSlNp5wEpdRaoiHRkxJGUOu1MB6U9g51j6TXph0Jeuq076kf1l73XXvCXh3vVvkqmYudQ3ZVEheK22yFASPNMFSwP4IuxZwTjXaTqmvaWQF2H9MeYtp9KQvCHmLatu69vP8As8NpTLi4kP8tdzAoJfYiL47ciNHibarMzbWsdwFElTgQb48E1R6_AiWbXahZyYdErlgfw39c_gA61pKO</recordid><startdate>20010715</startdate><enddate>20010715</enddate><creator>Strupczewski, W.G.</creator><creator>Singh, V.P.</creator><creator>Feluch, W.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20010715</creationdate><title>Non-stationary approach to at-site flood frequency modelling I. Maximum likelihood estimation</title><author>Strupczewski, W.G. ; Singh, V.P. ; Feluch, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a467t-7ed22846c20666b2a8e15e6181e3d718d067dca75ae7b83fe05e47d5e59bd7543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>computer software</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Flood</topic><topic>Frequency</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Natural hazards: prediction, damages, etc</topic><topic>Partial duration series</topic><topic>probability distribution</topic><topic>Time series</topic><topic>Trend</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strupczewski, W.G.</creatorcontrib><creatorcontrib>Singh, V.P.</creatorcontrib><creatorcontrib>Feluch, W.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strupczewski, W.G.</au><au>Singh, V.P.</au><au>Feluch, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-stationary approach to at-site flood frequency modelling I. Maximum likelihood estimation</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2001-07-15</date><risdate>2001</risdate><volume>248</volume><issue>1</issue><spage>123</spage><epage>142</epage><pages>123-142</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>For dealing with hydrological non-stationarity in flood frequency modelling (FFM) and hydrological design, it is necessary to account for trends. Taking the case of at-site FFM, statistical parametric techniques are discussed for investigation of the time-trend. The investigation entails (1) an identification of a probability distribution, and (2) development of a trend software. The Akaike Information Criterion (AIC) was used to identify the optimum distribution, i.e. the distribution and trend function, which enabled an identification of the optimum non-stationary FFM in a class of 56 competing models. The maximum likelihood (ML) method was used to estimate the parameters of the identified model using annual peak discharge series. A trend can be assumed in the first two moments of a probability distribution function and it can be of either linear or parabolic form. Both the annual maximum series (AMS) and partial duration series (PDS) approach were considered in the at-site frequency modeling.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0022-1694(01)00397-3</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1694 |
ispartof | Journal of hydrology (Amsterdam), 2001-07, Vol.248 (1), p.123-142 |
issn | 0022-1694 1879-2707 |
language | eng |
recordid | cdi_proquest_miscellaneous_18082899 |
source | Elsevier ScienceDirect Journals Complete |
subjects | computer software Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Exact sciences and technology Flood Frequency Hydrology Hydrology. Hydrogeology Natural hazards: prediction, damages, etc Partial duration series probability distribution Time series Trend |
title | Non-stationary approach to at-site flood frequency modelling I. Maximum likelihood estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-stationary%20approach%20to%20at-site%20flood%20frequency%20modelling%20I.%20Maximum%20likelihood%20estimation&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Strupczewski,%20W.G.&rft.date=2001-07-15&rft.volume=248&rft.issue=1&rft.spage=123&rft.epage=142&rft.pages=123-142&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/S0022-1694(01)00397-3&rft_dat=%3Cproquest_cross%3E18082899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18082899&rft_id=info:pmid/&rft_els_id=S0022169401003973&rfr_iscdi=true |