Variance-based interaction index measuring heteroscedasticity

This work is motivated by the need to deal with models with high-dimensional input spaces of real variables. One way to tackle high-dimensional problems is to identify interaction or non-interaction among input parameters. We propose a new variance-based sensitivity interaction index that can detect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2016-06, Vol.203, p.152-161
Hauptverfasser: Ito, Keiichi, Couckuyt, Ivo, Poles, Silvia, Dhaene, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161
container_issue
container_start_page 152
container_title Computer physics communications
container_volume 203
creator Ito, Keiichi
Couckuyt, Ivo
Poles, Silvia
Dhaene, Tom
description This work is motivated by the need to deal with models with high-dimensional input spaces of real variables. One way to tackle high-dimensional problems is to identify interaction or non-interaction among input parameters. We propose a new variance-based sensitivity interaction index that can detect and quantify interactions among the input variables of mathematical functions and computer simulations. The computation is very similar to first-order sensitivity indices by Sobol’. The proposed interaction index can quantify the relative importance of input variables in interaction. Furthermore, detection of non-interaction for screening can be done with as low as 4n+2 function evaluations, where n is the number of input variables. Using the interaction indices based on heteroscedasticity, the original function may be decomposed into a set of lower dimensional functions which may then be analyzed separately.
doi_str_mv 10.1016/j.cpc.2016.02.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808125728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465516300479</els_id><sourcerecordid>1808125728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-fef48258fc508d6c2b5feceb2cd95a70084e98f22357be0e41ad6b07b69933a53</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwFuPXnadJJtNgniQ4j8oeFGvIZtMNKXdrclW7Lc3pZ49zYN5b3jzI-SSQk2BttfL2m1czYqsgdXA2RGZUCV1xXTTHJMJAIWqaYU4JWc5LwFASs0n5Pbdpmh7h1VnM_pZ7EdM1o1x6Iv2-DNbo83bFPuP2SeW3ZAdepvH6OK4Oycnwa4yXvzNKXl7uH-dP1WLl8fn-d2icpyJsQoYGsWECk6A8q1jnQjosGPOa2ElgGpQq8AYF7JDwIZa33Ygu1Zrzq3gU3J1uLtJw9cW82jWsfRYrWyPwzYbqkBRJiRTxUoPVleq5oTBbFJc27QzFMwelVmagsrsURlgpqAqmZtDBssP3xGTyS5igeJjQjcaP8R_0r_0IHIO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808125728</pqid></control><display><type>article</type><title>Variance-based interaction index measuring heteroscedasticity</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ito, Keiichi ; Couckuyt, Ivo ; Poles, Silvia ; Dhaene, Tom</creator><creatorcontrib>Ito, Keiichi ; Couckuyt, Ivo ; Poles, Silvia ; Dhaene, Tom</creatorcontrib><description>This work is motivated by the need to deal with models with high-dimensional input spaces of real variables. One way to tackle high-dimensional problems is to identify interaction or non-interaction among input parameters. We propose a new variance-based sensitivity interaction index that can detect and quantify interactions among the input variables of mathematical functions and computer simulations. The computation is very similar to first-order sensitivity indices by Sobol’. The proposed interaction index can quantify the relative importance of input variables in interaction. Furthermore, detection of non-interaction for screening can be done with as low as 4n+2 function evaluations, where n is the number of input variables. Using the interaction indices based on heteroscedasticity, the original function may be decomposed into a set of lower dimensional functions which may then be analyzed separately.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2016.02.032</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computation ; Computer simulation ; Decomposition ; Dimensional analysis ; Interaction ; Mathematical analysis ; Mathematical models ; Optimization ; Parameter estimation ; Problem decomposition ; Real variables ; Screening ; Sensitivity analysis ; Sobol’ indices</subject><ispartof>Computer physics communications, 2016-06, Vol.203, p.152-161</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-fef48258fc508d6c2b5feceb2cd95a70084e98f22357be0e41ad6b07b69933a53</cites><orcidid>0000-0003-1364-9477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cpc.2016.02.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ito, Keiichi</creatorcontrib><creatorcontrib>Couckuyt, Ivo</creatorcontrib><creatorcontrib>Poles, Silvia</creatorcontrib><creatorcontrib>Dhaene, Tom</creatorcontrib><title>Variance-based interaction index measuring heteroscedasticity</title><title>Computer physics communications</title><description>This work is motivated by the need to deal with models with high-dimensional input spaces of real variables. One way to tackle high-dimensional problems is to identify interaction or non-interaction among input parameters. We propose a new variance-based sensitivity interaction index that can detect and quantify interactions among the input variables of mathematical functions and computer simulations. The computation is very similar to first-order sensitivity indices by Sobol’. The proposed interaction index can quantify the relative importance of input variables in interaction. Furthermore, detection of non-interaction for screening can be done with as low as 4n+2 function evaluations, where n is the number of input variables. Using the interaction indices based on heteroscedasticity, the original function may be decomposed into a set of lower dimensional functions which may then be analyzed separately.</description><subject>Computation</subject><subject>Computer simulation</subject><subject>Decomposition</subject><subject>Dimensional analysis</subject><subject>Interaction</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Problem decomposition</subject><subject>Real variables</subject><subject>Screening</subject><subject>Sensitivity analysis</subject><subject>Sobol’ indices</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwFuPXnadJJtNgniQ4j8oeFGvIZtMNKXdrclW7Lc3pZ49zYN5b3jzI-SSQk2BttfL2m1czYqsgdXA2RGZUCV1xXTTHJMJAIWqaYU4JWc5LwFASs0n5Pbdpmh7h1VnM_pZ7EdM1o1x6Iv2-DNbo83bFPuP2SeW3ZAdepvH6OK4Oycnwa4yXvzNKXl7uH-dP1WLl8fn-d2icpyJsQoYGsWECk6A8q1jnQjosGPOa2ElgGpQq8AYF7JDwIZa33Ygu1Zrzq3gU3J1uLtJw9cW82jWsfRYrWyPwzYbqkBRJiRTxUoPVleq5oTBbFJc27QzFMwelVmagsrsURlgpqAqmZtDBssP3xGTyS5igeJjQjcaP8R_0r_0IHIO</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Ito, Keiichi</creator><creator>Couckuyt, Ivo</creator><creator>Poles, Silvia</creator><creator>Dhaene, Tom</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1364-9477</orcidid></search><sort><creationdate>201606</creationdate><title>Variance-based interaction index measuring heteroscedasticity</title><author>Ito, Keiichi ; Couckuyt, Ivo ; Poles, Silvia ; Dhaene, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-fef48258fc508d6c2b5feceb2cd95a70084e98f22357be0e41ad6b07b69933a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computation</topic><topic>Computer simulation</topic><topic>Decomposition</topic><topic>Dimensional analysis</topic><topic>Interaction</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Problem decomposition</topic><topic>Real variables</topic><topic>Screening</topic><topic>Sensitivity analysis</topic><topic>Sobol’ indices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ito, Keiichi</creatorcontrib><creatorcontrib>Couckuyt, Ivo</creatorcontrib><creatorcontrib>Poles, Silvia</creatorcontrib><creatorcontrib>Dhaene, Tom</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, Keiichi</au><au>Couckuyt, Ivo</au><au>Poles, Silvia</au><au>Dhaene, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variance-based interaction index measuring heteroscedasticity</atitle><jtitle>Computer physics communications</jtitle><date>2016-06</date><risdate>2016</risdate><volume>203</volume><spage>152</spage><epage>161</epage><pages>152-161</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>This work is motivated by the need to deal with models with high-dimensional input spaces of real variables. One way to tackle high-dimensional problems is to identify interaction or non-interaction among input parameters. We propose a new variance-based sensitivity interaction index that can detect and quantify interactions among the input variables of mathematical functions and computer simulations. The computation is very similar to first-order sensitivity indices by Sobol’. The proposed interaction index can quantify the relative importance of input variables in interaction. Furthermore, detection of non-interaction for screening can be done with as low as 4n+2 function evaluations, where n is the number of input variables. Using the interaction indices based on heteroscedasticity, the original function may be decomposed into a set of lower dimensional functions which may then be analyzed separately.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2016.02.032</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1364-9477</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2016-06, Vol.203, p.152-161
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_1808125728
source Elsevier ScienceDirect Journals Complete
subjects Computation
Computer simulation
Decomposition
Dimensional analysis
Interaction
Mathematical analysis
Mathematical models
Optimization
Parameter estimation
Problem decomposition
Real variables
Screening
Sensitivity analysis
Sobol’ indices
title Variance-based interaction index measuring heteroscedasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variance-based%20interaction%20index%20measuring%20heteroscedasticity&rft.jtitle=Computer%20physics%20communications&rft.au=Ito,%20Keiichi&rft.date=2016-06&rft.volume=203&rft.spage=152&rft.epage=161&rft.pages=152-161&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2016.02.032&rft_dat=%3Cproquest_cross%3E1808125728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808125728&rft_id=info:pmid/&rft_els_id=S0010465516300479&rfr_iscdi=true