Analysis of the light trapping effect on the performance of silicon-based solar cells: absorption enhancement

Nowadays, there is a great interest in discovering alternative approaches to reduce the cost per the output power of first generation crystalline silicon solar cells. Light propagation in solar cells is controlled by interaction between periodic structure filters and light. Therefore, designing ultr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2015-04, Vol.54 (12), p.3591-3601
Hauptverfasser: Heidarzadeh, Hamid, Rostami, Ali, Matloub, Samiye, Dolatyari, Mahboubeh, Rostami, Ghassem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3601
container_issue 12
container_start_page 3591
container_title Applied Optics
container_volume 54
creator Heidarzadeh, Hamid
Rostami, Ali
Matloub, Samiye
Dolatyari, Mahboubeh
Rostami, Ghassem
description Nowadays, there is a great interest in discovering alternative approaches to reduce the cost per the output power of first generation crystalline silicon solar cells. Light propagation in solar cells is controlled by interaction between periodic structure filters and light. Therefore, designing ultrathin solar cells in which light is trapped in the active layer is so important to efficiently absorb the light. In the present paper, the combination of a distributed Bragg reflector (DBR) with a rectangular- or triangular-shaped grating is introduced as a photonic backside filter for both TE and TM polarizations. It is shown that by applying this DBR with a triangular grating, it is possible to enhance the efficiency of crystalline solar cells up to 20% for 2.5 [mu]m Si cells in TE-polarized incident light. By optimizing the shape of the grating, the efficiencies can be increased to 22.1% and 23.52% in 5 [mu]m and 7.5 [mu]m Si solar cells for TE-polarized incident light, respectively. Similar results have been achieved for TM-polarized incident light. In addition, introducing rectangular or triangular grating structures improves light trapping over the solar spectrum from 400 to 1100 nm which is revealed by calculation of the electric field. The triangular-shaped gratings are an effective approach for light trapping in thin crystalline solar cells and will inspire low-cost high-efficiency solar cell designs. Finally, efficiency as a function of angle of incidence of light for a triangular grating has been obtained. Finding results in this work show promise for designing ultrathin solar cells with enhanced light absorption.
doi_str_mv 10.1364/AO.54.003591
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808124125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808124125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-6fd2f6fa39f4fec6f5380aac86b22fae2bc5f6a6aae0e6b8abd416d24d4344a33</originalsourceid><addsrcrecordid>eNotkEtPwzAQhC0EEqVw4wf4yIEUv5VwiypeUqVe4GxtHLs1Suxgu4f-e1LKaaXdb2ZWg9A9JSvKlXhqtyspVoRw2dALtKCSN5WQjF2iBZm3lWq4vEY3OX8TQlmtmgUa2wDDMfuMo8Nlb_Hgd_uCS4Jp8mGHrXPWFBzD33GyycU0QjD2xGc_eBND1UG2Pc5xgISNHYb8jKHLMU3Fz0Ib9ifBaEO5RVcOhmzv_ucSfb2-fK7fq8327WPdbiojiCiVcj1zygFvnJjjlZO8JgCmVh1jDizrjHQKFIAlVnU1dL2gqmeiF1wI4HyJHs6-U4o_B5uLHn0-fQbBxkPWtCY1ZYIyOaOPZ9SkmHOyTk_Jj5COmhJ9alW3Wy2FPrfKfwE4_2zB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808124125</pqid></control><display><type>article</type><title>Analysis of the light trapping effect on the performance of silicon-based solar cells: absorption enhancement</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Heidarzadeh, Hamid ; Rostami, Ali ; Matloub, Samiye ; Dolatyari, Mahboubeh ; Rostami, Ghassem</creator><creatorcontrib>Heidarzadeh, Hamid ; Rostami, Ali ; Matloub, Samiye ; Dolatyari, Mahboubeh ; Rostami, Ghassem</creatorcontrib><description>Nowadays, there is a great interest in discovering alternative approaches to reduce the cost per the output power of first generation crystalline silicon solar cells. Light propagation in solar cells is controlled by interaction between periodic structure filters and light. Therefore, designing ultrathin solar cells in which light is trapped in the active layer is so important to efficiently absorb the light. In the present paper, the combination of a distributed Bragg reflector (DBR) with a rectangular- or triangular-shaped grating is introduced as a photonic backside filter for both TE and TM polarizations. It is shown that by applying this DBR with a triangular grating, it is possible to enhance the efficiency of crystalline solar cells up to 20% for 2.5 [mu]m Si cells in TE-polarized incident light. By optimizing the shape of the grating, the efficiencies can be increased to 22.1% and 23.52% in 5 [mu]m and 7.5 [mu]m Si solar cells for TE-polarized incident light, respectively. Similar results have been achieved for TM-polarized incident light. In addition, introducing rectangular or triangular grating structures improves light trapping over the solar spectrum from 400 to 1100 nm which is revealed by calculation of the electric field. The triangular-shaped gratings are an effective approach for light trapping in thin crystalline solar cells and will inspire low-cost high-efficiency solar cell designs. Finally, efficiency as a function of angle of incidence of light for a triangular grating has been obtained. Finding results in this work show promise for designing ultrathin solar cells with enhanced light absorption.</description><identifier>ISSN: 0003-6935</identifier><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 1539-4522</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.54.003591</identifier><language>eng</language><subject>Crystal structure ; Diffraction gratings ; Gratings (spectra) ; Incident light ; Photovoltaic cells ; Silicon ; Solar cells ; Trapping</subject><ispartof>Applied Optics, 2015-04, Vol.54 (12), p.3591-3601</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-6fd2f6fa39f4fec6f5380aac86b22fae2bc5f6a6aae0e6b8abd416d24d4344a33</citedby><cites>FETCH-LOGICAL-c404t-6fd2f6fa39f4fec6f5380aac86b22fae2bc5f6a6aae0e6b8abd416d24d4344a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Heidarzadeh, Hamid</creatorcontrib><creatorcontrib>Rostami, Ali</creatorcontrib><creatorcontrib>Matloub, Samiye</creatorcontrib><creatorcontrib>Dolatyari, Mahboubeh</creatorcontrib><creatorcontrib>Rostami, Ghassem</creatorcontrib><title>Analysis of the light trapping effect on the performance of silicon-based solar cells: absorption enhancement</title><title>Applied Optics</title><description>Nowadays, there is a great interest in discovering alternative approaches to reduce the cost per the output power of first generation crystalline silicon solar cells. Light propagation in solar cells is controlled by interaction between periodic structure filters and light. Therefore, designing ultrathin solar cells in which light is trapped in the active layer is so important to efficiently absorb the light. In the present paper, the combination of a distributed Bragg reflector (DBR) with a rectangular- or triangular-shaped grating is introduced as a photonic backside filter for both TE and TM polarizations. It is shown that by applying this DBR with a triangular grating, it is possible to enhance the efficiency of crystalline solar cells up to 20% for 2.5 [mu]m Si cells in TE-polarized incident light. By optimizing the shape of the grating, the efficiencies can be increased to 22.1% and 23.52% in 5 [mu]m and 7.5 [mu]m Si solar cells for TE-polarized incident light, respectively. Similar results have been achieved for TM-polarized incident light. In addition, introducing rectangular or triangular grating structures improves light trapping over the solar spectrum from 400 to 1100 nm which is revealed by calculation of the electric field. The triangular-shaped gratings are an effective approach for light trapping in thin crystalline solar cells and will inspire low-cost high-efficiency solar cell designs. Finally, efficiency as a function of angle of incidence of light for a triangular grating has been obtained. Finding results in this work show promise for designing ultrathin solar cells with enhanced light absorption.</description><subject>Crystal structure</subject><subject>Diffraction gratings</subject><subject>Gratings (spectra)</subject><subject>Incident light</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Trapping</subject><issn>0003-6935</issn><issn>1559-128X</issn><issn>1539-4522</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkEtPwzAQhC0EEqVw4wf4yIEUv5VwiypeUqVe4GxtHLs1Suxgu4f-e1LKaaXdb2ZWg9A9JSvKlXhqtyspVoRw2dALtKCSN5WQjF2iBZm3lWq4vEY3OX8TQlmtmgUa2wDDMfuMo8Nlb_Hgd_uCS4Jp8mGHrXPWFBzD33GyycU0QjD2xGc_eBND1UG2Pc5xgISNHYb8jKHLMU3Fz0Ib9ifBaEO5RVcOhmzv_ucSfb2-fK7fq8327WPdbiojiCiVcj1zygFvnJjjlZO8JgCmVh1jDizrjHQKFIAlVnU1dL2gqmeiF1wI4HyJHs6-U4o_B5uLHn0-fQbBxkPWtCY1ZYIyOaOPZ9SkmHOyTk_Jj5COmhJ9alW3Wy2FPrfKfwE4_2zB</recordid><startdate>20150420</startdate><enddate>20150420</enddate><creator>Heidarzadeh, Hamid</creator><creator>Rostami, Ali</creator><creator>Matloub, Samiye</creator><creator>Dolatyari, Mahboubeh</creator><creator>Rostami, Ghassem</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150420</creationdate><title>Analysis of the light trapping effect on the performance of silicon-based solar cells: absorption enhancement</title><author>Heidarzadeh, Hamid ; Rostami, Ali ; Matloub, Samiye ; Dolatyari, Mahboubeh ; Rostami, Ghassem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-6fd2f6fa39f4fec6f5380aac86b22fae2bc5f6a6aae0e6b8abd416d24d4344a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Crystal structure</topic><topic>Diffraction gratings</topic><topic>Gratings (spectra)</topic><topic>Incident light</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heidarzadeh, Hamid</creatorcontrib><creatorcontrib>Rostami, Ali</creatorcontrib><creatorcontrib>Matloub, Samiye</creatorcontrib><creatorcontrib>Dolatyari, Mahboubeh</creatorcontrib><creatorcontrib>Rostami, Ghassem</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heidarzadeh, Hamid</au><au>Rostami, Ali</au><au>Matloub, Samiye</au><au>Dolatyari, Mahboubeh</au><au>Rostami, Ghassem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the light trapping effect on the performance of silicon-based solar cells: absorption enhancement</atitle><jtitle>Applied Optics</jtitle><date>2015-04-20</date><risdate>2015</risdate><volume>54</volume><issue>12</issue><spage>3591</spage><epage>3601</epage><pages>3591-3601</pages><issn>0003-6935</issn><issn>1559-128X</issn><eissn>1539-4522</eissn><eissn>2155-3165</eissn><abstract>Nowadays, there is a great interest in discovering alternative approaches to reduce the cost per the output power of first generation crystalline silicon solar cells. Light propagation in solar cells is controlled by interaction between periodic structure filters and light. Therefore, designing ultrathin solar cells in which light is trapped in the active layer is so important to efficiently absorb the light. In the present paper, the combination of a distributed Bragg reflector (DBR) with a rectangular- or triangular-shaped grating is introduced as a photonic backside filter for both TE and TM polarizations. It is shown that by applying this DBR with a triangular grating, it is possible to enhance the efficiency of crystalline solar cells up to 20% for 2.5 [mu]m Si cells in TE-polarized incident light. By optimizing the shape of the grating, the efficiencies can be increased to 22.1% and 23.52% in 5 [mu]m and 7.5 [mu]m Si solar cells for TE-polarized incident light, respectively. Similar results have been achieved for TM-polarized incident light. In addition, introducing rectangular or triangular grating structures improves light trapping over the solar spectrum from 400 to 1100 nm which is revealed by calculation of the electric field. The triangular-shaped gratings are an effective approach for light trapping in thin crystalline solar cells and will inspire low-cost high-efficiency solar cell designs. Finally, efficiency as a function of angle of incidence of light for a triangular grating has been obtained. Finding results in this work show promise for designing ultrathin solar cells with enhanced light absorption.</abstract><doi>10.1364/AO.54.003591</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6935
ispartof Applied Optics, 2015-04, Vol.54 (12), p.3591-3601
issn 0003-6935
1559-128X
1539-4522
2155-3165
language eng
recordid cdi_proquest_miscellaneous_1808124125
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Crystal structure
Diffraction gratings
Gratings (spectra)
Incident light
Photovoltaic cells
Silicon
Solar cells
Trapping
title Analysis of the light trapping effect on the performance of silicon-based solar cells: absorption enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20light%20trapping%20effect%20on%20the%20performance%20of%20silicon-based%20solar%20cells:%20absorption%20enhancement&rft.jtitle=Applied%20Optics&rft.au=Heidarzadeh,%20Hamid&rft.date=2015-04-20&rft.volume=54&rft.issue=12&rft.spage=3591&rft.epage=3601&rft.pages=3591-3601&rft.issn=0003-6935&rft.eissn=1539-4522&rft_id=info:doi/10.1364/AO.54.003591&rft_dat=%3Cproquest_cross%3E1808124125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808124125&rft_id=info:pmid/&rfr_iscdi=true