Anti-Toxoplasma activity and impact evaluation of lyophilization, hot molding process, and gamma-irradiation techniques on CLH-PLGA intravitreal implants
Intraocular delivery systems have been developed to treat many eye diseases, especially those affecting the posterior segment of the eye. However, ocular toxoplasmosis, the leading cause of infectious posterior uveitis in the world, still lacks an effective treatment. Therefore, our group developed...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 2016, Vol.27 (1), p.10-12, Article 10 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 10 |
container_title | Journal of materials science. Materials in medicine |
container_volume | 27 |
creator | Fernandes-Cunha, Gabriella M. Rezende, Cíntia M. F. Mussel, Wagner N. da Silva, Gisele R. de L. Gomes, Elionai C. Yoshida, Maria I. Fialho, Sílvia L. Goes, Alfredo M. Gomes, Dawison A. de Almeida Vitor, Ricardo W. Silva-Cunha, Armando |
description | Intraocular delivery systems have been developed to treat many eye diseases, especially those affecting the posterior segment of the eye. However, ocular toxoplasmosis, the leading cause of infectious posterior uveitis in the world, still lacks an effective treatment. Therefore, our group developed an intravitreal polymeric implant to release clindamycin, a potent anti-
Toxoplasma
antibiotic. In this work, we used different techniques such as differential scanning calorimetry, thermogravimetry, X-ray diffraction, scanning electron microscopy, and fourier-transform infrared spectroscopy to investigate drug/polymer properties while manufacturing the delivery system. We showed that the lyophilization, hot molding process, and sterilization by gamma irradiation did not change drug/polymer physical-chemistry properties. The drug was found to be homogeneously dispersed into the poly lactic-co-glycolic acid (PLGA) chains and the profile release was characterized by an initial burst followed by prolonged release. The drug profile release was not modified after gamma irradiation and non-covalent interaction was found between the drug and the PLGA. We also observed the preservation of the drug activity by showing the potent anti-
Toxoplasma
effect of the implant, after 24–72 h in contact with cells infected by the parasite, which highlights this system as an alternative to treat toxoplasmic retinochoroiditis.
Graphical Abstract |
doi_str_mv | 10.1007/s10856-015-5621-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808122097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3896902731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-d7059a3ee60ea3ad9fd968bcd7aab8244aac6abb2f44314d58b983db803ea11e3</originalsourceid><addsrcrecordid>eNqNks1u1DAUhSMEokPhAdggS2xY1OD_OMvRCFqkkWBR1tFN7My4SuJgO1WHN-FtcZqCEBKClXXt75x7rHuL4iUlbykh5btIiZYKEyqxVIxi-qjYUFlyLDTXj4sNqWSJheTkrHgW4w0hRFRSPi3OmFKlytJN8X07Joev_Z2feogDIGiTu3XphGA0yA1TrpG9hX6G5PyIfIf6k5-Ornff7m8u0NEnNPjeuPGApuBbG-PFvfoAwwDYhQDGrepk2-Povs42olzt9lf48_5yi9yYAuSmwUK_9OxhTPF58aSDPtoXD-d58eXD--vdFd5_uvy42-5xK7hO2JREVsCtVcQCB1N1plK6aU0J0GgmBECroGlYJwSnwkjdVJqbRhNugVLLz4s3q2_OviRL9eBia_scwvo51lQTTRkjVflvtNREspIq_h-oJIIppmhGX_-B3vg5jPnPmVoGJnKETNGVaoOPMdiunoIbIJxqSuplG-p1G-q8DfWyDfXi_OrBeW4Ga34pfo4_A2wFYn4aDzb81vqvrj8ANXLByw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1749554180</pqid></control><display><type>article</type><title>Anti-Toxoplasma activity and impact evaluation of lyophilization, hot molding process, and gamma-irradiation techniques on CLH-PLGA intravitreal implants</title><source>MEDLINE</source><source>Springer Nature</source><creator>Fernandes-Cunha, Gabriella M. ; Rezende, Cíntia M. F. ; Mussel, Wagner N. ; da Silva, Gisele R. ; de L. Gomes, Elionai C. ; Yoshida, Maria I. ; Fialho, Sílvia L. ; Goes, Alfredo M. ; Gomes, Dawison A. ; de Almeida Vitor, Ricardo W. ; Silva-Cunha, Armando</creator><creatorcontrib>Fernandes-Cunha, Gabriella M. ; Rezende, Cíntia M. F. ; Mussel, Wagner N. ; da Silva, Gisele R. ; de L. Gomes, Elionai C. ; Yoshida, Maria I. ; Fialho, Sílvia L. ; Goes, Alfredo M. ; Gomes, Dawison A. ; de Almeida Vitor, Ricardo W. ; Silva-Cunha, Armando</creatorcontrib><description>Intraocular delivery systems have been developed to treat many eye diseases, especially those affecting the posterior segment of the eye. However, ocular toxoplasmosis, the leading cause of infectious posterior uveitis in the world, still lacks an effective treatment. Therefore, our group developed an intravitreal polymeric implant to release clindamycin, a potent anti-
Toxoplasma
antibiotic. In this work, we used different techniques such as differential scanning calorimetry, thermogravimetry, X-ray diffraction, scanning electron microscopy, and fourier-transform infrared spectroscopy to investigate drug/polymer properties while manufacturing the delivery system. We showed that the lyophilization, hot molding process, and sterilization by gamma irradiation did not change drug/polymer physical-chemistry properties. The drug was found to be homogeneously dispersed into the poly lactic-co-glycolic acid (PLGA) chains and the profile release was characterized by an initial burst followed by prolonged release. The drug profile release was not modified after gamma irradiation and non-covalent interaction was found between the drug and the PLGA. We also observed the preservation of the drug activity by showing the potent anti-
Toxoplasma
effect of the implant, after 24–72 h in contact with cells infected by the parasite, which highlights this system as an alternative to treat toxoplasmic retinochoroiditis.
Graphical Abstract</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-015-5621-1</identifier><identifier>PMID: 26676856</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Antiprotozoal Agents - administration & dosage ; Biomaterials ; Biomaterials Synthesis and Characterization ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Calorimetry, Differential Scanning ; Cell Line ; Ceramics ; Chemistry and Materials Science ; Clindamycin - administration & dosage ; Composites ; Delivery systems ; Drug delivery systems ; Drugs ; Eyes ; Freeze Drying ; Gamma irradiation ; Gamma Rays ; Glass ; Hot Temperature ; Humans ; Implants ; Lactic Acid ; Materials Science ; Microscopy, Electron, Scanning ; Molding (process) ; Natural Materials ; Polyglycolic Acid ; Polymer Sciences ; Regenerative Medicine/Tissue Engineering ; Spectroscopy, Fourier Transform Infrared ; Surfaces and Interfaces ; Thermogravimetry ; Thin Films ; Toxoplasma - drug effects ; Vitreous Body ; X-Ray Diffraction</subject><ispartof>Journal of materials science. Materials in medicine, 2016, Vol.27 (1), p.10-12, Article 10</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-d7059a3ee60ea3ad9fd968bcd7aab8244aac6abb2f44314d58b983db803ea11e3</citedby><cites>FETCH-LOGICAL-c438t-d7059a3ee60ea3ad9fd968bcd7aab8244aac6abb2f44314d58b983db803ea11e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-015-5621-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-015-5621-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26676856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandes-Cunha, Gabriella M.</creatorcontrib><creatorcontrib>Rezende, Cíntia M. F.</creatorcontrib><creatorcontrib>Mussel, Wagner N.</creatorcontrib><creatorcontrib>da Silva, Gisele R.</creatorcontrib><creatorcontrib>de L. Gomes, Elionai C.</creatorcontrib><creatorcontrib>Yoshida, Maria I.</creatorcontrib><creatorcontrib>Fialho, Sílvia L.</creatorcontrib><creatorcontrib>Goes, Alfredo M.</creatorcontrib><creatorcontrib>Gomes, Dawison A.</creatorcontrib><creatorcontrib>de Almeida Vitor, Ricardo W.</creatorcontrib><creatorcontrib>Silva-Cunha, Armando</creatorcontrib><title>Anti-Toxoplasma activity and impact evaluation of lyophilization, hot molding process, and gamma-irradiation techniques on CLH-PLGA intravitreal implants</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Intraocular delivery systems have been developed to treat many eye diseases, especially those affecting the posterior segment of the eye. However, ocular toxoplasmosis, the leading cause of infectious posterior uveitis in the world, still lacks an effective treatment. Therefore, our group developed an intravitreal polymeric implant to release clindamycin, a potent anti-
Toxoplasma
antibiotic. In this work, we used different techniques such as differential scanning calorimetry, thermogravimetry, X-ray diffraction, scanning electron microscopy, and fourier-transform infrared spectroscopy to investigate drug/polymer properties while manufacturing the delivery system. We showed that the lyophilization, hot molding process, and sterilization by gamma irradiation did not change drug/polymer physical-chemistry properties. The drug was found to be homogeneously dispersed into the poly lactic-co-glycolic acid (PLGA) chains and the profile release was characterized by an initial burst followed by prolonged release. The drug profile release was not modified after gamma irradiation and non-covalent interaction was found between the drug and the PLGA. We also observed the preservation of the drug activity by showing the potent anti-
Toxoplasma
effect of the implant, after 24–72 h in contact with cells infected by the parasite, which highlights this system as an alternative to treat toxoplasmic retinochoroiditis.
Graphical Abstract</description><subject>Antiprotozoal Agents - administration & dosage</subject><subject>Biomaterials</subject><subject>Biomaterials Synthesis and Characterization</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Calorimetry, Differential Scanning</subject><subject>Cell Line</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Clindamycin - administration & dosage</subject><subject>Composites</subject><subject>Delivery systems</subject><subject>Drug delivery systems</subject><subject>Drugs</subject><subject>Eyes</subject><subject>Freeze Drying</subject><subject>Gamma irradiation</subject><subject>Gamma Rays</subject><subject>Glass</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Implants</subject><subject>Lactic Acid</subject><subject>Materials Science</subject><subject>Microscopy, Electron, Scanning</subject><subject>Molding (process)</subject><subject>Natural Materials</subject><subject>Polyglycolic Acid</subject><subject>Polymer Sciences</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Surfaces and Interfaces</subject><subject>Thermogravimetry</subject><subject>Thin Films</subject><subject>Toxoplasma - drug effects</subject><subject>Vitreous Body</subject><subject>X-Ray Diffraction</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNks1u1DAUhSMEokPhAdggS2xY1OD_OMvRCFqkkWBR1tFN7My4SuJgO1WHN-FtcZqCEBKClXXt75x7rHuL4iUlbykh5btIiZYKEyqxVIxi-qjYUFlyLDTXj4sNqWSJheTkrHgW4w0hRFRSPi3OmFKlytJN8X07Joev_Z2feogDIGiTu3XphGA0yA1TrpG9hX6G5PyIfIf6k5-Ornff7m8u0NEnNPjeuPGApuBbG-PFvfoAwwDYhQDGrepk2-Povs42olzt9lf48_5yi9yYAuSmwUK_9OxhTPF58aSDPtoXD-d58eXD--vdFd5_uvy42-5xK7hO2JREVsCtVcQCB1N1plK6aU0J0GgmBECroGlYJwSnwkjdVJqbRhNugVLLz4s3q2_OviRL9eBia_scwvo51lQTTRkjVflvtNREspIq_h-oJIIppmhGX_-B3vg5jPnPmVoGJnKETNGVaoOPMdiunoIbIJxqSuplG-p1G-q8DfWyDfXi_OrBeW4Ga34pfo4_A2wFYn4aDzb81vqvrj8ANXLByw</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Fernandes-Cunha, Gabriella M.</creator><creator>Rezende, Cíntia M. F.</creator><creator>Mussel, Wagner N.</creator><creator>da Silva, Gisele R.</creator><creator>de L. Gomes, Elionai C.</creator><creator>Yoshida, Maria I.</creator><creator>Fialho, Sílvia L.</creator><creator>Goes, Alfredo M.</creator><creator>Gomes, Dawison A.</creator><creator>de Almeida Vitor, Ricardo W.</creator><creator>Silva-Cunha, Armando</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><scope>M7N</scope></search><sort><creationdate>2016</creationdate><title>Anti-Toxoplasma activity and impact evaluation of lyophilization, hot molding process, and gamma-irradiation techniques on CLH-PLGA intravitreal implants</title><author>Fernandes-Cunha, Gabriella M. ; Rezende, Cíntia M. F. ; Mussel, Wagner N. ; da Silva, Gisele R. ; de L. Gomes, Elionai C. ; Yoshida, Maria I. ; Fialho, Sílvia L. ; Goes, Alfredo M. ; Gomes, Dawison A. ; de Almeida Vitor, Ricardo W. ; Silva-Cunha, Armando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-d7059a3ee60ea3ad9fd968bcd7aab8244aac6abb2f44314d58b983db803ea11e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antiprotozoal Agents - administration & dosage</topic><topic>Biomaterials</topic><topic>Biomaterials Synthesis and Characterization</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Calorimetry, Differential Scanning</topic><topic>Cell Line</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Clindamycin - administration & dosage</topic><topic>Composites</topic><topic>Delivery systems</topic><topic>Drug delivery systems</topic><topic>Drugs</topic><topic>Eyes</topic><topic>Freeze Drying</topic><topic>Gamma irradiation</topic><topic>Gamma Rays</topic><topic>Glass</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Implants</topic><topic>Lactic Acid</topic><topic>Materials Science</topic><topic>Microscopy, Electron, Scanning</topic><topic>Molding (process)</topic><topic>Natural Materials</topic><topic>Polyglycolic Acid</topic><topic>Polymer Sciences</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Surfaces and Interfaces</topic><topic>Thermogravimetry</topic><topic>Thin Films</topic><topic>Toxoplasma - drug effects</topic><topic>Vitreous Body</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes-Cunha, Gabriella M.</creatorcontrib><creatorcontrib>Rezende, Cíntia M. F.</creatorcontrib><creatorcontrib>Mussel, Wagner N.</creatorcontrib><creatorcontrib>da Silva, Gisele R.</creatorcontrib><creatorcontrib>de L. Gomes, Elionai C.</creatorcontrib><creatorcontrib>Yoshida, Maria I.</creatorcontrib><creatorcontrib>Fialho, Sílvia L.</creatorcontrib><creatorcontrib>Goes, Alfredo M.</creatorcontrib><creatorcontrib>Gomes, Dawison A.</creatorcontrib><creatorcontrib>de Almeida Vitor, Ricardo W.</creatorcontrib><creatorcontrib>Silva-Cunha, Armando</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>MEDLINE - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes-Cunha, Gabriella M.</au><au>Rezende, Cíntia M. F.</au><au>Mussel, Wagner N.</au><au>da Silva, Gisele R.</au><au>de L. Gomes, Elionai C.</au><au>Yoshida, Maria I.</au><au>Fialho, Sílvia L.</au><au>Goes, Alfredo M.</au><au>Gomes, Dawison A.</au><au>de Almeida Vitor, Ricardo W.</au><au>Silva-Cunha, Armando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-Toxoplasma activity and impact evaluation of lyophilization, hot molding process, and gamma-irradiation techniques on CLH-PLGA intravitreal implants</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2016</date><risdate>2016</risdate><volume>27</volume><issue>1</issue><spage>10</spage><epage>12</epage><pages>10-12</pages><artnum>10</artnum><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Intraocular delivery systems have been developed to treat many eye diseases, especially those affecting the posterior segment of the eye. However, ocular toxoplasmosis, the leading cause of infectious posterior uveitis in the world, still lacks an effective treatment. Therefore, our group developed an intravitreal polymeric implant to release clindamycin, a potent anti-
Toxoplasma
antibiotic. In this work, we used different techniques such as differential scanning calorimetry, thermogravimetry, X-ray diffraction, scanning electron microscopy, and fourier-transform infrared spectroscopy to investigate drug/polymer properties while manufacturing the delivery system. We showed that the lyophilization, hot molding process, and sterilization by gamma irradiation did not change drug/polymer physical-chemistry properties. The drug was found to be homogeneously dispersed into the poly lactic-co-glycolic acid (PLGA) chains and the profile release was characterized by an initial burst followed by prolonged release. The drug profile release was not modified after gamma irradiation and non-covalent interaction was found between the drug and the PLGA. We also observed the preservation of the drug activity by showing the potent anti-
Toxoplasma
effect of the implant, after 24–72 h in contact with cells infected by the parasite, which highlights this system as an alternative to treat toxoplasmic retinochoroiditis.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26676856</pmid><doi>10.1007/s10856-015-5621-1</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4530 |
ispartof | Journal of materials science. Materials in medicine, 2016, Vol.27 (1), p.10-12, Article 10 |
issn | 0957-4530 1573-4838 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808122097 |
source | MEDLINE; Springer Nature |
subjects | Antiprotozoal Agents - administration & dosage Biomaterials Biomaterials Synthesis and Characterization Biomedical Engineering and Bioengineering Biomedical materials Calorimetry, Differential Scanning Cell Line Ceramics Chemistry and Materials Science Clindamycin - administration & dosage Composites Delivery systems Drug delivery systems Drugs Eyes Freeze Drying Gamma irradiation Gamma Rays Glass Hot Temperature Humans Implants Lactic Acid Materials Science Microscopy, Electron, Scanning Molding (process) Natural Materials Polyglycolic Acid Polymer Sciences Regenerative Medicine/Tissue Engineering Spectroscopy, Fourier Transform Infrared Surfaces and Interfaces Thermogravimetry Thin Films Toxoplasma - drug effects Vitreous Body X-Ray Diffraction |
title | Anti-Toxoplasma activity and impact evaluation of lyophilization, hot molding process, and gamma-irradiation techniques on CLH-PLGA intravitreal implants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-Toxoplasma%20activity%20and%20impact%20evaluation%20of%20lyophilization,%20hot%20molding%20process,%20and%20gamma-irradiation%20techniques%20on%20CLH-PLGA%20intravitreal%20implants&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Fernandes-Cunha,%20Gabriella%20M.&rft.date=2016&rft.volume=27&rft.issue=1&rft.spage=10&rft.epage=12&rft.pages=10-12&rft.artnum=10&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-015-5621-1&rft_dat=%3Cproquest_cross%3E3896902731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1749554180&rft_id=info:pmid/26676856&rfr_iscdi=true |