Calibration Weighting Methods for Complex Surveys

This paper presents a careful investigation of the three popular calibration weighting methods: (i) generalised regression; (ii) generalised exponential tilting and (iii) generalised pseudo empirical likelihood, with a major focus on computational aspects of the methods and some empirical evidences...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International statistical review 2016-04, Vol.84 (1), p.79-98
Hauptverfasser: Wu, Changbao, Lu, Wilson W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue 1
container_start_page 79
container_title International statistical review
container_volume 84
creator Wu, Changbao
Lu, Wilson W.
description This paper presents a careful investigation of the three popular calibration weighting methods: (i) generalised regression; (ii) generalised exponential tilting and (iii) generalised pseudo empirical likelihood, with a major focus on computational aspects of the methods and some empirical evidences on calibrated weights. We also propose a simple weight trimming method for rangerestricted calibration. The finite sample behaviour of the weights obtained by the three calibration weighting methods and the effectiveness of the proposed weight trimming method are examined through limited simulation studies.
doi_str_mv 10.1111/insr.12097
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808120434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44162462</jstor_id><sourcerecordid>44162462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3947-2001423a8de294d2f0679ab242660b81157068bd531847722207e81ff805bc383</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFYv3oWAFxFSZ783Rylai59YpeJlSdpNuzXN1t1U2__eaNSDB-cyh_d7w7yH0D6GDq7nxJbBdzCBRG6gFpYcx1wRuolaQEHEUlK2jXZCmAEAJYq1EO6mhc18WllXRkNjJ9PKlpPo2lRTNw5R7nzUdfNFYVbRYOnfzDrsoq08LYLZ-95t9Hh-9tC9iK9ue_3u6VU8ogmTMQHAjNBUjQ1J2JjkIGSSZoQRISBTGHMJQmVjTrFiUhJCQBqF81wBz0ZU0TY6au4uvHtdmlDpuQ0jUxRpadwyaKxA1UkZZTV6-AeduaUv6-80lopzACmTmjpuqJF3IXiT64W389SvNQb92Z7-bE9_tVfDuIHfbWHW_5C6fzO4__EcNJ5ZqJz_9TCGBWGC1Hrc6DZUZvWrp_5FC0kl18Obnr67ZFQ882v9RD8AULuHQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785500779</pqid></control><display><type>article</type><title>Calibration Weighting Methods for Complex Surveys</title><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Wu, Changbao ; Lu, Wilson W.</creator><creatorcontrib>Wu, Changbao ; Lu, Wilson W.</creatorcontrib><description>This paper presents a careful investigation of the three popular calibration weighting methods: (i) generalised regression; (ii) generalised exponential tilting and (iii) generalised pseudo empirical likelihood, with a major focus on computational aspects of the methods and some empirical evidences on calibrated weights. We also propose a simple weight trimming method for rangerestricted calibration. The finite sample behaviour of the weights obtained by the three calibration weighting methods and the effectiveness of the proposed weight trimming method are examined through limited simulation studies.</description><identifier>ISSN: 0306-7734</identifier><identifier>EISSN: 1751-5823</identifier><identifier>DOI: 10.1111/insr.12097</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Calibration ; Computer simulation ; Empirical analysis ; Exponential tilting ; Kullback-Leibler distance ; Mathematical analysis ; Newton-Raphson procedure ; Polls &amp; surveys ; pseudo empirical likelihood ; range-restricted calibration weights ; Regression ; Regression analysis ; regression weighting ; Samples ; Simulation ; Trimming ; Weight ; Weighting methods</subject><ispartof>International statistical review, 2016-04, Vol.84 (1), p.79-98</ispartof><rights>2016 International Statistical Institute</rights><rights>2015 The Authors. International Statistical Review © 2015 International Statistical Institute</rights><rights>Copyright John Wiley &amp; Sons, Inc. Apr 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3947-2001423a8de294d2f0679ab242660b81157068bd531847722207e81ff805bc383</citedby><cites>FETCH-LOGICAL-c3947-2001423a8de294d2f0679ab242660b81157068bd531847722207e81ff805bc383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44162462$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44162462$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,1412,27905,27906,45555,45556,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>Wu, Changbao</creatorcontrib><creatorcontrib>Lu, Wilson W.</creatorcontrib><title>Calibration Weighting Methods for Complex Surveys</title><title>International statistical review</title><addtitle>International Statistical Review</addtitle><description>This paper presents a careful investigation of the three popular calibration weighting methods: (i) generalised regression; (ii) generalised exponential tilting and (iii) generalised pseudo empirical likelihood, with a major focus on computational aspects of the methods and some empirical evidences on calibrated weights. We also propose a simple weight trimming method for rangerestricted calibration. The finite sample behaviour of the weights obtained by the three calibration weighting methods and the effectiveness of the proposed weight trimming method are examined through limited simulation studies.</description><subject>Calibration</subject><subject>Computer simulation</subject><subject>Empirical analysis</subject><subject>Exponential tilting</subject><subject>Kullback-Leibler distance</subject><subject>Mathematical analysis</subject><subject>Newton-Raphson procedure</subject><subject>Polls &amp; surveys</subject><subject>pseudo empirical likelihood</subject><subject>range-restricted calibration weights</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>regression weighting</subject><subject>Samples</subject><subject>Simulation</subject><subject>Trimming</subject><subject>Weight</subject><subject>Weighting methods</subject><issn>0306-7734</issn><issn>1751-5823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFYv3oWAFxFSZ783Rylai59YpeJlSdpNuzXN1t1U2__eaNSDB-cyh_d7w7yH0D6GDq7nxJbBdzCBRG6gFpYcx1wRuolaQEHEUlK2jXZCmAEAJYq1EO6mhc18WllXRkNjJ9PKlpPo2lRTNw5R7nzUdfNFYVbRYOnfzDrsoq08LYLZ-95t9Hh-9tC9iK9ue_3u6VU8ogmTMQHAjNBUjQ1J2JjkIGSSZoQRISBTGHMJQmVjTrFiUhJCQBqF81wBz0ZU0TY6au4uvHtdmlDpuQ0jUxRpadwyaKxA1UkZZTV6-AeduaUv6-80lopzACmTmjpuqJF3IXiT64W389SvNQb92Z7-bE9_tVfDuIHfbWHW_5C6fzO4__EcNJ5ZqJz_9TCGBWGC1Hrc6DZUZvWrp_5FC0kl18Obnr67ZFQ882v9RD8AULuHQQ</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Wu, Changbao</creator><creator>Lu, Wilson W.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201604</creationdate><title>Calibration Weighting Methods for Complex Surveys</title><author>Wu, Changbao ; Lu, Wilson W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3947-2001423a8de294d2f0679ab242660b81157068bd531847722207e81ff805bc383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Calibration</topic><topic>Computer simulation</topic><topic>Empirical analysis</topic><topic>Exponential tilting</topic><topic>Kullback-Leibler distance</topic><topic>Mathematical analysis</topic><topic>Newton-Raphson procedure</topic><topic>Polls &amp; surveys</topic><topic>pseudo empirical likelihood</topic><topic>range-restricted calibration weights</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>regression weighting</topic><topic>Samples</topic><topic>Simulation</topic><topic>Trimming</topic><topic>Weight</topic><topic>Weighting methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Changbao</creatorcontrib><creatorcontrib>Lu, Wilson W.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International statistical review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Changbao</au><au>Lu, Wilson W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibration Weighting Methods for Complex Surveys</atitle><jtitle>International statistical review</jtitle><addtitle>International Statistical Review</addtitle><date>2016-04</date><risdate>2016</risdate><volume>84</volume><issue>1</issue><spage>79</spage><epage>98</epage><pages>79-98</pages><issn>0306-7734</issn><eissn>1751-5823</eissn><abstract>This paper presents a careful investigation of the three popular calibration weighting methods: (i) generalised regression; (ii) generalised exponential tilting and (iii) generalised pseudo empirical likelihood, with a major focus on computational aspects of the methods and some empirical evidences on calibrated weights. We also propose a simple weight trimming method for rangerestricted calibration. The finite sample behaviour of the weights obtained by the three calibration weighting methods and the effectiveness of the proposed weight trimming method are examined through limited simulation studies.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/insr.12097</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-7734
ispartof International statistical review, 2016-04, Vol.84 (1), p.79-98
issn 0306-7734
1751-5823
language eng
recordid cdi_proquest_miscellaneous_1808120434
source Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Calibration
Computer simulation
Empirical analysis
Exponential tilting
Kullback-Leibler distance
Mathematical analysis
Newton-Raphson procedure
Polls & surveys
pseudo empirical likelihood
range-restricted calibration weights
Regression
Regression analysis
regression weighting
Samples
Simulation
Trimming
Weight
Weighting methods
title Calibration Weighting Methods for Complex Surveys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibration%20Weighting%20Methods%20for%20Complex%20Surveys&rft.jtitle=International%20statistical%20review&rft.au=Wu,%20Changbao&rft.date=2016-04&rft.volume=84&rft.issue=1&rft.spage=79&rft.epage=98&rft.pages=79-98&rft.issn=0306-7734&rft.eissn=1751-5823&rft_id=info:doi/10.1111/insr.12097&rft_dat=%3Cjstor_proqu%3E44162462%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785500779&rft_id=info:pmid/&rft_jstor_id=44162462&rfr_iscdi=true