A method for numerical modelling of convection-reaction-diffusion using electrical analogues
In this paper, a new method, called the lumped‐component circuit method (LCM), is developed for one‐dimensioal and two‐dimensional convection–reaction–diffusion with low to moderate Peclet numbers, tested for modelling both steady‐state and transient problems, and compared with standard finite volum...
Gespeichert in:
Veröffentlicht in: | International journal of numerical modelling 2016-05, Vol.29 (3), p.417-436 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 436 |
---|---|
container_issue | 3 |
container_start_page | 417 |
container_title | International journal of numerical modelling |
container_volume | 29 |
creator | Shafaq, Sabawoon Kennedy, Alan Delauré, Yan |
description | In this paper, a new method, called the lumped‐component circuit method (LCM), is developed for one‐dimensioal and two‐dimensional convection–reaction–diffusion with low to moderate Peclet numbers, tested for modelling both steady‐state and transient problems, and compared with standard finite volume method (FVM) schemes. The method has been developed principally for solving equations with piecewise‐constant coefficients using nodes that are not positioned to correspond to the coefficient discontinuities. In such situations, the FVM solutions do not converge consistently as the node spacing is decreased, but LCM solutions do. In general, the LCM method is more accurate than the FVM schemes tested, and, while the computational cost of LCM is higher, results suggest that it can be more efficient. Like the transmission line method (TLM), it is an indirect scheme in which the problem to be solved is first represented by an analogous transmission line (TL). Unlike with TLM, however, the TL is then modelled using a lumped‐component circuit, the voltages at nodes within that circuit being calculated. Copyright © 2015 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/jnm.2091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808120213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808120213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3981-8094e2de1fdea3940b7bb160daaf9e6db42235b678eed688081277e9a5b0a1823</originalsourceid><addsrcrecordid>eNp10FtLwzAUB_AgCs4L-BEKvvhSPUm6JnkcolPRiTcUEULans7OtpnJqu7bG50oCr4k5-F3LvwJ2aKwSwHY3qRtdhkoukR6FJSKKYNkmfRAqiTmXMAqWfN-AgCc9lmPPAyiBmePtohK66K2a9BVuamjxhZY11U7jmwZ5bZ9wXxW2TZ2aBZFUZVl50MVhTcwrINY9JrW1Hbcod8gK6WpPW5-_evk5vDgev8oPj0fHu8PTuOcK0ljCSpBViAtCzRcJZCJLKMpFMaUCtMiSxjj_SwVErFIpQRJmRCoTD8DQyXj62RnMXfq7HPYO9NN5fNwv2nRdl7TzxZglAe6_YdObOfCwUEJoVLBORU_A3NnvXdY6qmrGuPmmoL-iFmHmPVHzIHGC_pa1Tj_1-mT0dlvX_kZvn174550WC76-nY01HB3f3nFxIWW_B1Glo21</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779673317</pqid></control><display><type>article</type><title>A method for numerical modelling of convection-reaction-diffusion using electrical analogues</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shafaq, Sabawoon ; Kennedy, Alan ; Delauré, Yan</creator><creatorcontrib>Shafaq, Sabawoon ; Kennedy, Alan ; Delauré, Yan</creatorcontrib><description>In this paper, a new method, called the lumped‐component circuit method (LCM), is developed for one‐dimensioal and two‐dimensional convection–reaction–diffusion with low to moderate Peclet numbers, tested for modelling both steady‐state and transient problems, and compared with standard finite volume method (FVM) schemes. The method has been developed principally for solving equations with piecewise‐constant coefficients using nodes that are not positioned to correspond to the coefficient discontinuities. In such situations, the FVM solutions do not converge consistently as the node spacing is decreased, but LCM solutions do. In general, the LCM method is more accurate than the FVM schemes tested, and, while the computational cost of LCM is higher, results suggest that it can be more efficient. Like the transmission line method (TLM), it is an indirect scheme in which the problem to be solved is first represented by an analogous transmission line (TL). Unlike with TLM, however, the TL is then modelled using a lumped‐component circuit, the voltages at nodes within that circuit being calculated. Copyright © 2015 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0894-3370</identifier><identifier>EISSN: 1099-1204</identifier><identifier>DOI: 10.1002/jnm.2091</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>advection-diffusion modelling ; Circuits ; Computational efficiency ; convection-reaction modelling ; convection-reaction-diffusion modelling ; Discontinuity ; Mathematical analysis ; Mathematical models ; Modelling ; reaction-diffusion modelling ; Transmission lines ; Voltage</subject><ispartof>International journal of numerical modelling, 2016-05, Vol.29 (3), p.417-436</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3981-8094e2de1fdea3940b7bb160daaf9e6db42235b678eed688081277e9a5b0a1823</citedby><cites>FETCH-LOGICAL-c3981-8094e2de1fdea3940b7bb160daaf9e6db42235b678eed688081277e9a5b0a1823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnm.2091$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnm.2091$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shafaq, Sabawoon</creatorcontrib><creatorcontrib>Kennedy, Alan</creatorcontrib><creatorcontrib>Delauré, Yan</creatorcontrib><title>A method for numerical modelling of convection-reaction-diffusion using electrical analogues</title><title>International journal of numerical modelling</title><addtitle>Int. J. Numer. Model</addtitle><description>In this paper, a new method, called the lumped‐component circuit method (LCM), is developed for one‐dimensioal and two‐dimensional convection–reaction–diffusion with low to moderate Peclet numbers, tested for modelling both steady‐state and transient problems, and compared with standard finite volume method (FVM) schemes. The method has been developed principally for solving equations with piecewise‐constant coefficients using nodes that are not positioned to correspond to the coefficient discontinuities. In such situations, the FVM solutions do not converge consistently as the node spacing is decreased, but LCM solutions do. In general, the LCM method is more accurate than the FVM schemes tested, and, while the computational cost of LCM is higher, results suggest that it can be more efficient. Like the transmission line method (TLM), it is an indirect scheme in which the problem to be solved is first represented by an analogous transmission line (TL). Unlike with TLM, however, the TL is then modelled using a lumped‐component circuit, the voltages at nodes within that circuit being calculated. Copyright © 2015 John Wiley & Sons, Ltd.</description><subject>advection-diffusion modelling</subject><subject>Circuits</subject><subject>Computational efficiency</subject><subject>convection-reaction modelling</subject><subject>convection-reaction-diffusion modelling</subject><subject>Discontinuity</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>reaction-diffusion modelling</subject><subject>Transmission lines</subject><subject>Voltage</subject><issn>0894-3370</issn><issn>1099-1204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10FtLwzAUB_AgCs4L-BEKvvhSPUm6JnkcolPRiTcUEULans7OtpnJqu7bG50oCr4k5-F3LvwJ2aKwSwHY3qRtdhkoukR6FJSKKYNkmfRAqiTmXMAqWfN-AgCc9lmPPAyiBmePtohK66K2a9BVuamjxhZY11U7jmwZ5bZ9wXxW2TZ2aBZFUZVl50MVhTcwrINY9JrW1Hbcod8gK6WpPW5-_evk5vDgev8oPj0fHu8PTuOcK0ljCSpBViAtCzRcJZCJLKMpFMaUCtMiSxjj_SwVErFIpQRJmRCoTD8DQyXj62RnMXfq7HPYO9NN5fNwv2nRdl7TzxZglAe6_YdObOfCwUEJoVLBORU_A3NnvXdY6qmrGuPmmoL-iFmHmPVHzIHGC_pa1Tj_1-mT0dlvX_kZvn174550WC76-nY01HB3f3nFxIWW_B1Glo21</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Shafaq, Sabawoon</creator><creator>Kennedy, Alan</creator><creator>Delauré, Yan</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201605</creationdate><title>A method for numerical modelling of convection-reaction-diffusion using electrical analogues</title><author>Shafaq, Sabawoon ; Kennedy, Alan ; Delauré, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3981-8094e2de1fdea3940b7bb160daaf9e6db42235b678eed688081277e9a5b0a1823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>advection-diffusion modelling</topic><topic>Circuits</topic><topic>Computational efficiency</topic><topic>convection-reaction modelling</topic><topic>convection-reaction-diffusion modelling</topic><topic>Discontinuity</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>reaction-diffusion modelling</topic><topic>Transmission lines</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafaq, Sabawoon</creatorcontrib><creatorcontrib>Kennedy, Alan</creatorcontrib><creatorcontrib>Delauré, Yan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of numerical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafaq, Sabawoon</au><au>Kennedy, Alan</au><au>Delauré, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for numerical modelling of convection-reaction-diffusion using electrical analogues</atitle><jtitle>International journal of numerical modelling</jtitle><addtitle>Int. J. Numer. Model</addtitle><date>2016-05</date><risdate>2016</risdate><volume>29</volume><issue>3</issue><spage>417</spage><epage>436</epage><pages>417-436</pages><issn>0894-3370</issn><eissn>1099-1204</eissn><abstract>In this paper, a new method, called the lumped‐component circuit method (LCM), is developed for one‐dimensioal and two‐dimensional convection–reaction–diffusion with low to moderate Peclet numbers, tested for modelling both steady‐state and transient problems, and compared with standard finite volume method (FVM) schemes. The method has been developed principally for solving equations with piecewise‐constant coefficients using nodes that are not positioned to correspond to the coefficient discontinuities. In such situations, the FVM solutions do not converge consistently as the node spacing is decreased, but LCM solutions do. In general, the LCM method is more accurate than the FVM schemes tested, and, while the computational cost of LCM is higher, results suggest that it can be more efficient. Like the transmission line method (TLM), it is an indirect scheme in which the problem to be solved is first represented by an analogous transmission line (TL). Unlike with TLM, however, the TL is then modelled using a lumped‐component circuit, the voltages at nodes within that circuit being calculated. Copyright © 2015 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jnm.2091</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-3370 |
ispartof | International journal of numerical modelling, 2016-05, Vol.29 (3), p.417-436 |
issn | 0894-3370 1099-1204 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808120213 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | advection-diffusion modelling Circuits Computational efficiency convection-reaction modelling convection-reaction-diffusion modelling Discontinuity Mathematical analysis Mathematical models Modelling reaction-diffusion modelling Transmission lines Voltage |
title | A method for numerical modelling of convection-reaction-diffusion using electrical analogues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20numerical%20modelling%20of%20convection-reaction-diffusion%20using%20electrical%20analogues&rft.jtitle=International%20journal%20of%20numerical%20modelling&rft.au=Shafaq,%20Sabawoon&rft.date=2016-05&rft.volume=29&rft.issue=3&rft.spage=417&rft.epage=436&rft.pages=417-436&rft.issn=0894-3370&rft.eissn=1099-1204&rft_id=info:doi/10.1002/jnm.2091&rft_dat=%3Cproquest_cross%3E1808120213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779673317&rft_id=info:pmid/&rfr_iscdi=true |