A method for numerical modelling of convection-reaction-diffusion using electrical analogues

In this paper, a new method, called the lumped‐component circuit method (LCM), is developed for one‐dimensioal and two‐dimensional convection–reaction–diffusion with low to moderate Peclet numbers, tested for modelling both steady‐state and transient problems, and compared with standard finite volum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of numerical modelling 2016-05, Vol.29 (3), p.417-436
Hauptverfasser: Shafaq, Sabawoon, Kennedy, Alan, Delauré, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 436
container_issue 3
container_start_page 417
container_title International journal of numerical modelling
container_volume 29
creator Shafaq, Sabawoon
Kennedy, Alan
Delauré, Yan
description In this paper, a new method, called the lumped‐component circuit method (LCM), is developed for one‐dimensioal and two‐dimensional convection–reaction–diffusion with low to moderate Peclet numbers, tested for modelling both steady‐state and transient problems, and compared with standard finite volume method (FVM) schemes. The method has been developed principally for solving equations with piecewise‐constant coefficients using nodes that are not positioned to correspond to the coefficient discontinuities. In such situations, the FVM solutions do not converge consistently as the node spacing is decreased, but LCM solutions do. In general, the LCM method is more accurate than the FVM schemes tested, and, while the computational cost of LCM is higher, results suggest that it can be more efficient. Like the transmission line method (TLM), it is an indirect scheme in which the problem to be solved is first represented by an analogous transmission line (TL). Unlike with TLM, however, the TL is then modelled using a lumped‐component circuit, the voltages at nodes within that circuit being calculated. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/jnm.2091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808120213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808120213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3981-8094e2de1fdea3940b7bb160daaf9e6db42235b678eed688081277e9a5b0a1823</originalsourceid><addsrcrecordid>eNp10FtLwzAUB_AgCs4L-BEKvvhSPUm6JnkcolPRiTcUEULans7OtpnJqu7bG50oCr4k5-F3LvwJ2aKwSwHY3qRtdhkoukR6FJSKKYNkmfRAqiTmXMAqWfN-AgCc9lmPPAyiBmePtohK66K2a9BVuamjxhZY11U7jmwZ5bZ9wXxW2TZ2aBZFUZVl50MVhTcwrINY9JrW1Hbcod8gK6WpPW5-_evk5vDgev8oPj0fHu8PTuOcK0ljCSpBViAtCzRcJZCJLKMpFMaUCtMiSxjj_SwVErFIpQRJmRCoTD8DQyXj62RnMXfq7HPYO9NN5fNwv2nRdl7TzxZglAe6_YdObOfCwUEJoVLBORU_A3NnvXdY6qmrGuPmmoL-iFmHmPVHzIHGC_pa1Tj_1-mT0dlvX_kZvn174550WC76-nY01HB3f3nFxIWW_B1Glo21</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779673317</pqid></control><display><type>article</type><title>A method for numerical modelling of convection-reaction-diffusion using electrical analogues</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shafaq, Sabawoon ; Kennedy, Alan ; Delauré, Yan</creator><creatorcontrib>Shafaq, Sabawoon ; Kennedy, Alan ; Delauré, Yan</creatorcontrib><description>In this paper, a new method, called the lumped‐component circuit method (LCM), is developed for one‐dimensioal and two‐dimensional convection–reaction–diffusion with low to moderate Peclet numbers, tested for modelling both steady‐state and transient problems, and compared with standard finite volume method (FVM) schemes. The method has been developed principally for solving equations with piecewise‐constant coefficients using nodes that are not positioned to correspond to the coefficient discontinuities. In such situations, the FVM solutions do not converge consistently as the node spacing is decreased, but LCM solutions do. In general, the LCM method is more accurate than the FVM schemes tested, and, while the computational cost of LCM is higher, results suggest that it can be more efficient. Like the transmission line method (TLM), it is an indirect scheme in which the problem to be solved is first represented by an analogous transmission line (TL). Unlike with TLM, however, the TL is then modelled using a lumped‐component circuit, the voltages at nodes within that circuit being calculated. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0894-3370</identifier><identifier>EISSN: 1099-1204</identifier><identifier>DOI: 10.1002/jnm.2091</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>advection-diffusion modelling ; Circuits ; Computational efficiency ; convection-reaction modelling ; convection-reaction-diffusion modelling ; Discontinuity ; Mathematical analysis ; Mathematical models ; Modelling ; reaction-diffusion modelling ; Transmission lines ; Voltage</subject><ispartof>International journal of numerical modelling, 2016-05, Vol.29 (3), p.417-436</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3981-8094e2de1fdea3940b7bb160daaf9e6db42235b678eed688081277e9a5b0a1823</citedby><cites>FETCH-LOGICAL-c3981-8094e2de1fdea3940b7bb160daaf9e6db42235b678eed688081277e9a5b0a1823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnm.2091$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnm.2091$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shafaq, Sabawoon</creatorcontrib><creatorcontrib>Kennedy, Alan</creatorcontrib><creatorcontrib>Delauré, Yan</creatorcontrib><title>A method for numerical modelling of convection-reaction-diffusion using electrical analogues</title><title>International journal of numerical modelling</title><addtitle>Int. J. Numer. Model</addtitle><description>In this paper, a new method, called the lumped‐component circuit method (LCM), is developed for one‐dimensioal and two‐dimensional convection–reaction–diffusion with low to moderate Peclet numbers, tested for modelling both steady‐state and transient problems, and compared with standard finite volume method (FVM) schemes. The method has been developed principally for solving equations with piecewise‐constant coefficients using nodes that are not positioned to correspond to the coefficient discontinuities. In such situations, the FVM solutions do not converge consistently as the node spacing is decreased, but LCM solutions do. In general, the LCM method is more accurate than the FVM schemes tested, and, while the computational cost of LCM is higher, results suggest that it can be more efficient. Like the transmission line method (TLM), it is an indirect scheme in which the problem to be solved is first represented by an analogous transmission line (TL). Unlike with TLM, however, the TL is then modelled using a lumped‐component circuit, the voltages at nodes within that circuit being calculated. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>advection-diffusion modelling</subject><subject>Circuits</subject><subject>Computational efficiency</subject><subject>convection-reaction modelling</subject><subject>convection-reaction-diffusion modelling</subject><subject>Discontinuity</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>reaction-diffusion modelling</subject><subject>Transmission lines</subject><subject>Voltage</subject><issn>0894-3370</issn><issn>1099-1204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10FtLwzAUB_AgCs4L-BEKvvhSPUm6JnkcolPRiTcUEULans7OtpnJqu7bG50oCr4k5-F3LvwJ2aKwSwHY3qRtdhkoukR6FJSKKYNkmfRAqiTmXMAqWfN-AgCc9lmPPAyiBmePtohK66K2a9BVuamjxhZY11U7jmwZ5bZ9wXxW2TZ2aBZFUZVl50MVhTcwrINY9JrW1Hbcod8gK6WpPW5-_evk5vDgev8oPj0fHu8PTuOcK0ljCSpBViAtCzRcJZCJLKMpFMaUCtMiSxjj_SwVErFIpQRJmRCoTD8DQyXj62RnMXfq7HPYO9NN5fNwv2nRdl7TzxZglAe6_YdObOfCwUEJoVLBORU_A3NnvXdY6qmrGuPmmoL-iFmHmPVHzIHGC_pa1Tj_1-mT0dlvX_kZvn174550WC76-nY01HB3f3nFxIWW_B1Glo21</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Shafaq, Sabawoon</creator><creator>Kennedy, Alan</creator><creator>Delauré, Yan</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201605</creationdate><title>A method for numerical modelling of convection-reaction-diffusion using electrical analogues</title><author>Shafaq, Sabawoon ; Kennedy, Alan ; Delauré, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3981-8094e2de1fdea3940b7bb160daaf9e6db42235b678eed688081277e9a5b0a1823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>advection-diffusion modelling</topic><topic>Circuits</topic><topic>Computational efficiency</topic><topic>convection-reaction modelling</topic><topic>convection-reaction-diffusion modelling</topic><topic>Discontinuity</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>reaction-diffusion modelling</topic><topic>Transmission lines</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafaq, Sabawoon</creatorcontrib><creatorcontrib>Kennedy, Alan</creatorcontrib><creatorcontrib>Delauré, Yan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of numerical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafaq, Sabawoon</au><au>Kennedy, Alan</au><au>Delauré, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for numerical modelling of convection-reaction-diffusion using electrical analogues</atitle><jtitle>International journal of numerical modelling</jtitle><addtitle>Int. J. Numer. Model</addtitle><date>2016-05</date><risdate>2016</risdate><volume>29</volume><issue>3</issue><spage>417</spage><epage>436</epage><pages>417-436</pages><issn>0894-3370</issn><eissn>1099-1204</eissn><abstract>In this paper, a new method, called the lumped‐component circuit method (LCM), is developed for one‐dimensioal and two‐dimensional convection–reaction–diffusion with low to moderate Peclet numbers, tested for modelling both steady‐state and transient problems, and compared with standard finite volume method (FVM) schemes. The method has been developed principally for solving equations with piecewise‐constant coefficients using nodes that are not positioned to correspond to the coefficient discontinuities. In such situations, the FVM solutions do not converge consistently as the node spacing is decreased, but LCM solutions do. In general, the LCM method is more accurate than the FVM schemes tested, and, while the computational cost of LCM is higher, results suggest that it can be more efficient. Like the transmission line method (TLM), it is an indirect scheme in which the problem to be solved is first represented by an analogous transmission line (TL). Unlike with TLM, however, the TL is then modelled using a lumped‐component circuit, the voltages at nodes within that circuit being calculated. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jnm.2091</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-3370
ispartof International journal of numerical modelling, 2016-05, Vol.29 (3), p.417-436
issn 0894-3370
1099-1204
language eng
recordid cdi_proquest_miscellaneous_1808120213
source Wiley Online Library Journals Frontfile Complete
subjects advection-diffusion modelling
Circuits
Computational efficiency
convection-reaction modelling
convection-reaction-diffusion modelling
Discontinuity
Mathematical analysis
Mathematical models
Modelling
reaction-diffusion modelling
Transmission lines
Voltage
title A method for numerical modelling of convection-reaction-diffusion using electrical analogues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20numerical%20modelling%20of%20convection-reaction-diffusion%20using%20electrical%20analogues&rft.jtitle=International%20journal%20of%20numerical%20modelling&rft.au=Shafaq,%20Sabawoon&rft.date=2016-05&rft.volume=29&rft.issue=3&rft.spage=417&rft.epage=436&rft.pages=417-436&rft.issn=0894-3370&rft.eissn=1099-1204&rft_id=info:doi/10.1002/jnm.2091&rft_dat=%3Cproquest_cross%3E1808120213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779673317&rft_id=info:pmid/&rfr_iscdi=true