Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix
We analyze the convergence of randomized trace estimators. Starting at 1989, several algorithms have been proposed for estimating the trace of a matrix by 1/MΣ i =1 M z i T Az i , where the z i are random vectors; different estimators use different distributions for the z i s, all of which lead to E...
Gespeichert in:
Veröffentlicht in: | Journal of the ACM 2011-04, Vol.58 (2), p.1-34 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Journal of the ACM |
container_volume | 58 |
creator | Avron, Haim Toledo, Sivan |
description | We analyze the convergence of randomized trace estimators. Starting at 1989, several algorithms have been proposed for estimating the trace of a matrix by 1/MΣ
i
=1
M
z
i
T
Az
i
, where the
z
i
are random vectors; different estimators use different distributions for the
z
i
s, all of which lead to
E
(1/MΣ
i
=1
M
z
i
T
Az
i
) = trace(
A
). These algorithms are useful in applications in which there is no explicit representation of
A
but rather an efficient method compute
z
T
Az
given
z
. Existing results only analyze the variance of the different estimators. In contrast, we analyze the number of samples
M
required to guarantee that with probability at least 1-δ, the relative error in the estimate is at most ϵ. We argue that such bounds are much more useful in applications than the variance. We found that these bounds rank the estimators differently than the variance; this suggests that minimum-variance estimators may not be the best.
We also make two additional contributions to this area. The first is a specialized bound for projection matrices, whose trace (rank) needs to be computed in electronic structure calculations. The second is a new estimator that uses less randomness than all the existing estimators. |
doi_str_mv | 10.1145/1944345.1944349 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808119946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671344365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-88355c17f79254a0aa4e783f702ed226170b8cabdfac6486b3afece09235ed7c3</originalsourceid><addsrcrecordid>eNqFkM1LAzEQR4MoWKtnrzl62TazSTa7Ryl-QUEQBW9Lmp20kc2mJqlY_3pX2runx8DjB_MIuQY2AxByDo0QXMjZgc0JmYCUqlBcvp-SCWNMFFIAnJOLlD7Gk5VMTQi-6KEL3v1gR3W_DtHljU_UhkgxZed1dsOa5g3SHLVBGizVA3V-2zvjMk177zFHZ-g2JJfdF9KE3hUdWje4jHQciO77kpxZ3Se8OnJK3u7vXhePxfL54WlxuyyMAJGLuuZSGlBWNaUUmmktUNXcKlZiV5YVKLaqjV51VptK1NWKa4sGWVNyiZ0yfEpuDrvbGD534wOtd8lg3-sBwy61ULMaoGlE9b9aKeBjyUqO6vygmhhSimjbbRzLxH0LrP1r3x7bH9nwX9YzeBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671344365</pqid></control><display><type>article</type><title>Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix</title><source>Access via ACM Digital Library</source><creator>Avron, Haim ; Toledo, Sivan</creator><creatorcontrib>Avron, Haim ; Toledo, Sivan</creatorcontrib><description>We analyze the convergence of randomized trace estimators. Starting at 1989, several algorithms have been proposed for estimating the trace of a matrix by 1/MΣ
i
=1
M
z
i
T
Az
i
, where the
z
i
are random vectors; different estimators use different distributions for the
z
i
s, all of which lead to
E
(1/MΣ
i
=1
M
z
i
T
Az
i
) = trace(
A
). These algorithms are useful in applications in which there is no explicit representation of
A
but rather an efficient method compute
z
T
Az
given
z
. Existing results only analyze the variance of the different estimators. In contrast, we analyze the number of samples
M
required to guarantee that with probability at least 1-δ, the relative error in the estimate is at most ϵ. We argue that such bounds are much more useful in applications than the variance. We found that these bounds rank the estimators differently than the variance; this suggests that minimum-variance estimators may not be the best.
We also make two additional contributions to this area. The first is a specialized bound for projection matrices, whose trace (rank) needs to be computed in electronic structure calculations. The second is a new estimator that uses less randomness than all the existing estimators.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/1944345.1944349</identifier><language>eng</language><subject>Algorithms ; Convergence ; Error analysis ; Estimates ; Estimating ; Estimators ; Mathematical analysis ; Representations ; Variance ; Vectors (mathematics)</subject><ispartof>Journal of the ACM, 2011-04, Vol.58 (2), p.1-34</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-88355c17f79254a0aa4e783f702ed226170b8cabdfac6486b3afece09235ed7c3</citedby><cites>FETCH-LOGICAL-c414t-88355c17f79254a0aa4e783f702ed226170b8cabdfac6486b3afece09235ed7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Avron, Haim</creatorcontrib><creatorcontrib>Toledo, Sivan</creatorcontrib><title>Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix</title><title>Journal of the ACM</title><description>We analyze the convergence of randomized trace estimators. Starting at 1989, several algorithms have been proposed for estimating the trace of a matrix by 1/MΣ
i
=1
M
z
i
T
Az
i
, where the
z
i
are random vectors; different estimators use different distributions for the
z
i
s, all of which lead to
E
(1/MΣ
i
=1
M
z
i
T
Az
i
) = trace(
A
). These algorithms are useful in applications in which there is no explicit representation of
A
but rather an efficient method compute
z
T
Az
given
z
. Existing results only analyze the variance of the different estimators. In contrast, we analyze the number of samples
M
required to guarantee that with probability at least 1-δ, the relative error in the estimate is at most ϵ. We argue that such bounds are much more useful in applications than the variance. We found that these bounds rank the estimators differently than the variance; this suggests that minimum-variance estimators may not be the best.
We also make two additional contributions to this area. The first is a specialized bound for projection matrices, whose trace (rank) needs to be computed in electronic structure calculations. The second is a new estimator that uses less randomness than all the existing estimators.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Estimating</subject><subject>Estimators</subject><subject>Mathematical analysis</subject><subject>Representations</subject><subject>Variance</subject><subject>Vectors (mathematics)</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQR4MoWKtnrzl62TazSTa7Ryl-QUEQBW9Lmp20kc2mJqlY_3pX2runx8DjB_MIuQY2AxByDo0QXMjZgc0JmYCUqlBcvp-SCWNMFFIAnJOLlD7Gk5VMTQi-6KEL3v1gR3W_DtHljU_UhkgxZed1dsOa5g3SHLVBGizVA3V-2zvjMk177zFHZ-g2JJfdF9KE3hUdWje4jHQciO77kpxZ3Se8OnJK3u7vXhePxfL54WlxuyyMAJGLuuZSGlBWNaUUmmktUNXcKlZiV5YVKLaqjV51VptK1NWKa4sGWVNyiZ0yfEpuDrvbGD534wOtd8lg3-sBwy61ULMaoGlE9b9aKeBjyUqO6vygmhhSimjbbRzLxH0LrP1r3x7bH9nwX9YzeBs</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Avron, Haim</creator><creator>Toledo, Sivan</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110401</creationdate><title>Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix</title><author>Avron, Haim ; Toledo, Sivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-88355c17f79254a0aa4e783f702ed226170b8cabdfac6486b3afece09235ed7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Estimating</topic><topic>Estimators</topic><topic>Mathematical analysis</topic><topic>Representations</topic><topic>Variance</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avron, Haim</creatorcontrib><creatorcontrib>Toledo, Sivan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avron, Haim</au><au>Toledo, Sivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix</atitle><jtitle>Journal of the ACM</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>58</volume><issue>2</issue><spage>1</spage><epage>34</epage><pages>1-34</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><abstract>We analyze the convergence of randomized trace estimators. Starting at 1989, several algorithms have been proposed for estimating the trace of a matrix by 1/MΣ
i
=1
M
z
i
T
Az
i
, where the
z
i
are random vectors; different estimators use different distributions for the
z
i
s, all of which lead to
E
(1/MΣ
i
=1
M
z
i
T
Az
i
) = trace(
A
). These algorithms are useful in applications in which there is no explicit representation of
A
but rather an efficient method compute
z
T
Az
given
z
. Existing results only analyze the variance of the different estimators. In contrast, we analyze the number of samples
M
required to guarantee that with probability at least 1-δ, the relative error in the estimate is at most ϵ. We argue that such bounds are much more useful in applications than the variance. We found that these bounds rank the estimators differently than the variance; this suggests that minimum-variance estimators may not be the best.
We also make two additional contributions to this area. The first is a specialized bound for projection matrices, whose trace (rank) needs to be computed in electronic structure calculations. The second is a new estimator that uses less randomness than all the existing estimators.</abstract><doi>10.1145/1944345.1944349</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-5411 |
ispartof | Journal of the ACM, 2011-04, Vol.58 (2), p.1-34 |
issn | 0004-5411 1557-735X |
language | eng |
recordid | cdi_proquest_miscellaneous_1808119946 |
source | Access via ACM Digital Library |
subjects | Algorithms Convergence Error analysis Estimates Estimating Estimators Mathematical analysis Representations Variance Vectors (mathematics) |
title | Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Randomized%20algorithms%20for%20estimating%20the%20trace%20of%20an%20implicit%20symmetric%20positive%20semi-definite%20matrix&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Avron,%20Haim&rft.date=2011-04-01&rft.volume=58&rft.issue=2&rft.spage=1&rft.epage=34&rft.pages=1-34&rft.issn=0004-5411&rft.eissn=1557-735X&rft_id=info:doi/10.1145/1944345.1944349&rft_dat=%3Cproquest_cross%3E1671344365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671344365&rft_id=info:pmid/&rfr_iscdi=true |