Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix

We analyze the convergence of randomized trace estimators. Starting at 1989, several algorithms have been proposed for estimating the trace of a matrix by 1/MΣ i =1 M z i T Az i , where the z i are random vectors; different estimators use different distributions for the z i s, all of which lead to E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 2011-04, Vol.58 (2), p.1-34
Hauptverfasser: Avron, Haim, Toledo, Sivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 2
container_start_page 1
container_title Journal of the ACM
container_volume 58
creator Avron, Haim
Toledo, Sivan
description We analyze the convergence of randomized trace estimators. Starting at 1989, several algorithms have been proposed for estimating the trace of a matrix by 1/MΣ i =1 M z i T Az i , where the z i are random vectors; different estimators use different distributions for the z i s, all of which lead to E (1/MΣ i =1 M z i T Az i ) = trace( A ). These algorithms are useful in applications in which there is no explicit representation of A but rather an efficient method compute z T Az given z . Existing results only analyze the variance of the different estimators. In contrast, we analyze the number of samples M required to guarantee that with probability at least 1-δ, the relative error in the estimate is at most ϵ. We argue that such bounds are much more useful in applications than the variance. We found that these bounds rank the estimators differently than the variance; this suggests that minimum-variance estimators may not be the best. We also make two additional contributions to this area. The first is a specialized bound for projection matrices, whose trace (rank) needs to be computed in electronic structure calculations. The second is a new estimator that uses less randomness than all the existing estimators.
doi_str_mv 10.1145/1944345.1944349
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808119946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671344365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-88355c17f79254a0aa4e783f702ed226170b8cabdfac6486b3afece09235ed7c3</originalsourceid><addsrcrecordid>eNqFkM1LAzEQR4MoWKtnrzl62TazSTa7Ryl-QUEQBW9Lmp20kc2mJqlY_3pX2runx8DjB_MIuQY2AxByDo0QXMjZgc0JmYCUqlBcvp-SCWNMFFIAnJOLlD7Gk5VMTQi-6KEL3v1gR3W_DtHljU_UhkgxZed1dsOa5g3SHLVBGizVA3V-2zvjMk177zFHZ-g2JJfdF9KE3hUdWje4jHQciO77kpxZ3Se8OnJK3u7vXhePxfL54WlxuyyMAJGLuuZSGlBWNaUUmmktUNXcKlZiV5YVKLaqjV51VptK1NWKa4sGWVNyiZ0yfEpuDrvbGD534wOtd8lg3-sBwy61ULMaoGlE9b9aKeBjyUqO6vygmhhSimjbbRzLxH0LrP1r3x7bH9nwX9YzeBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671344365</pqid></control><display><type>article</type><title>Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix</title><source>Access via ACM Digital Library</source><creator>Avron, Haim ; Toledo, Sivan</creator><creatorcontrib>Avron, Haim ; Toledo, Sivan</creatorcontrib><description>We analyze the convergence of randomized trace estimators. Starting at 1989, several algorithms have been proposed for estimating the trace of a matrix by 1/MΣ i =1 M z i T Az i , where the z i are random vectors; different estimators use different distributions for the z i s, all of which lead to E (1/MΣ i =1 M z i T Az i ) = trace( A ). These algorithms are useful in applications in which there is no explicit representation of A but rather an efficient method compute z T Az given z . Existing results only analyze the variance of the different estimators. In contrast, we analyze the number of samples M required to guarantee that with probability at least 1-δ, the relative error in the estimate is at most ϵ. We argue that such bounds are much more useful in applications than the variance. We found that these bounds rank the estimators differently than the variance; this suggests that minimum-variance estimators may not be the best. We also make two additional contributions to this area. The first is a specialized bound for projection matrices, whose trace (rank) needs to be computed in electronic structure calculations. The second is a new estimator that uses less randomness than all the existing estimators.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/1944345.1944349</identifier><language>eng</language><subject>Algorithms ; Convergence ; Error analysis ; Estimates ; Estimating ; Estimators ; Mathematical analysis ; Representations ; Variance ; Vectors (mathematics)</subject><ispartof>Journal of the ACM, 2011-04, Vol.58 (2), p.1-34</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-88355c17f79254a0aa4e783f702ed226170b8cabdfac6486b3afece09235ed7c3</citedby><cites>FETCH-LOGICAL-c414t-88355c17f79254a0aa4e783f702ed226170b8cabdfac6486b3afece09235ed7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Avron, Haim</creatorcontrib><creatorcontrib>Toledo, Sivan</creatorcontrib><title>Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix</title><title>Journal of the ACM</title><description>We analyze the convergence of randomized trace estimators. Starting at 1989, several algorithms have been proposed for estimating the trace of a matrix by 1/MΣ i =1 M z i T Az i , where the z i are random vectors; different estimators use different distributions for the z i s, all of which lead to E (1/MΣ i =1 M z i T Az i ) = trace( A ). These algorithms are useful in applications in which there is no explicit representation of A but rather an efficient method compute z T Az given z . Existing results only analyze the variance of the different estimators. In contrast, we analyze the number of samples M required to guarantee that with probability at least 1-δ, the relative error in the estimate is at most ϵ. We argue that such bounds are much more useful in applications than the variance. We found that these bounds rank the estimators differently than the variance; this suggests that minimum-variance estimators may not be the best. We also make two additional contributions to this area. The first is a specialized bound for projection matrices, whose trace (rank) needs to be computed in electronic structure calculations. The second is a new estimator that uses less randomness than all the existing estimators.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Estimating</subject><subject>Estimators</subject><subject>Mathematical analysis</subject><subject>Representations</subject><subject>Variance</subject><subject>Vectors (mathematics)</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQR4MoWKtnrzl62TazSTa7Ryl-QUEQBW9Lmp20kc2mJqlY_3pX2runx8DjB_MIuQY2AxByDo0QXMjZgc0JmYCUqlBcvp-SCWNMFFIAnJOLlD7Gk5VMTQi-6KEL3v1gR3W_DtHljU_UhkgxZed1dsOa5g3SHLVBGizVA3V-2zvjMk177zFHZ-g2JJfdF9KE3hUdWje4jHQciO77kpxZ3Se8OnJK3u7vXhePxfL54WlxuyyMAJGLuuZSGlBWNaUUmmktUNXcKlZiV5YVKLaqjV51VptK1NWKa4sGWVNyiZ0yfEpuDrvbGD534wOtd8lg3-sBwy61ULMaoGlE9b9aKeBjyUqO6vygmhhSimjbbRzLxH0LrP1r3x7bH9nwX9YzeBs</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Avron, Haim</creator><creator>Toledo, Sivan</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110401</creationdate><title>Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix</title><author>Avron, Haim ; Toledo, Sivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-88355c17f79254a0aa4e783f702ed226170b8cabdfac6486b3afece09235ed7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Estimating</topic><topic>Estimators</topic><topic>Mathematical analysis</topic><topic>Representations</topic><topic>Variance</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avron, Haim</creatorcontrib><creatorcontrib>Toledo, Sivan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avron, Haim</au><au>Toledo, Sivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix</atitle><jtitle>Journal of the ACM</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>58</volume><issue>2</issue><spage>1</spage><epage>34</epage><pages>1-34</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><abstract>We analyze the convergence of randomized trace estimators. Starting at 1989, several algorithms have been proposed for estimating the trace of a matrix by 1/MΣ i =1 M z i T Az i , where the z i are random vectors; different estimators use different distributions for the z i s, all of which lead to E (1/MΣ i =1 M z i T Az i ) = trace( A ). These algorithms are useful in applications in which there is no explicit representation of A but rather an efficient method compute z T Az given z . Existing results only analyze the variance of the different estimators. In contrast, we analyze the number of samples M required to guarantee that with probability at least 1-δ, the relative error in the estimate is at most ϵ. We argue that such bounds are much more useful in applications than the variance. We found that these bounds rank the estimators differently than the variance; this suggests that minimum-variance estimators may not be the best. We also make two additional contributions to this area. The first is a specialized bound for projection matrices, whose trace (rank) needs to be computed in electronic structure calculations. The second is a new estimator that uses less randomness than all the existing estimators.</abstract><doi>10.1145/1944345.1944349</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-5411
ispartof Journal of the ACM, 2011-04, Vol.58 (2), p.1-34
issn 0004-5411
1557-735X
language eng
recordid cdi_proquest_miscellaneous_1808119946
source Access via ACM Digital Library
subjects Algorithms
Convergence
Error analysis
Estimates
Estimating
Estimators
Mathematical analysis
Representations
Variance
Vectors (mathematics)
title Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Randomized%20algorithms%20for%20estimating%20the%20trace%20of%20an%20implicit%20symmetric%20positive%20semi-definite%20matrix&rft.jtitle=Journal%20of%20the%20ACM&rft.au=Avron,%20Haim&rft.date=2011-04-01&rft.volume=58&rft.issue=2&rft.spage=1&rft.epage=34&rft.pages=1-34&rft.issn=0004-5411&rft.eissn=1557-735X&rft_id=info:doi/10.1145/1944345.1944349&rft_dat=%3Cproquest_cross%3E1671344365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671344365&rft_id=info:pmid/&rfr_iscdi=true