Entropy production, viscosity bounds and bumpy black holes
A bstract The ratio of shear viscosity to entropy density, η/s , is computed in various holographic geometries that break translation invariance (but are isotropic). The shear viscosity does not have a hydrodynamic interpretation in such backgrounds, but does quantify the rate of entropy production...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2016-03, Vol.2016 (3), p.1-34, Article 170 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2016 |
creator | Hartnoll, Sean A. Ramirez, David M. Santos, Jorge E. |
description | A
bstract
The ratio of shear viscosity to entropy density,
η/s
, is computed in various holographic geometries that break translation invariance (but are isotropic). The shear viscosity does not have a hydrodynamic interpretation in such backgrounds, but does quantify the rate of entropy production due to a strain. Fluctuations of the metric components
δg
xy
are massive about these backgrounds, leading to
η/s <
1
/
(4
π
) at all finite temperatures (even in Einstein gravity). As the temperature is taken to zero, different behaviors are possible. If translation symmetry breaking is irrelevant in the far IR, then
η/s
tends to a constant at
T
= 0. This constant can be parametrically small. If the translation symmetry is broken in the far IR (which nonetheless develops emergent scale invariance), then
η/s
∼
T
2
ν
as
T
→ 0, with
ν
≤ 1 in all cases we have considered. While these results violate simple bounds on
η/s
, we note that they are consistent with a possible bound on the rate of entropy production due to strain. |
doi_str_mv | 10.1007/JHEP03(2016)170 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808119691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808119691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-c57be406e6a002dbe3228eda947e0f279f473bae259a9aafa8cab0fb27a4c1893</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUws2YsEqFn58MxG6oKBVWCAWbr7DiQktrFTpD673EVBhamu-F5T-89hFxSuKEAfP60Wr5ANmNAyyvK4YhMKDCRVjkXx3_2U3IWwgaAFlTAhNwube_dbp_svKsH3bfOXiffbdAutP0-UW6wdUjQ1okathFTHerP5MN1JpyTkwa7YC5-55S83S9fF6t0_fzwuLhbpzoryj7VBVcmh9KUCMBqZTLGKlOjyLmBhnHR5DxTaFghUCA2WGlU0CjGMde0EtmUzMa7seLXYEIvt7Gf6Tq0xg1B0goqSkUpaETnI6q9C8GbRu58u0W_lxTkwZIcLcmDJRktxQSMiRBJ-2683LjB2_jPv5Ef9CtqEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808119691</pqid></control><display><type>article</type><title>Entropy production, viscosity bounds and bumpy black holes</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Hartnoll, Sean A. ; Ramirez, David M. ; Santos, Jorge E.</creator><creatorcontrib>Hartnoll, Sean A. ; Ramirez, David M. ; Santos, Jorge E.</creatorcontrib><description>A
bstract
The ratio of shear viscosity to entropy density,
η/s
, is computed in various holographic geometries that break translation invariance (but are isotropic). The shear viscosity does not have a hydrodynamic interpretation in such backgrounds, but does quantify the rate of entropy production due to a strain. Fluctuations of the metric components
δg
xy
are massive about these backgrounds, leading to
η/s <
1
/
(4
π
) at all finite temperatures (even in Einstein gravity). As the temperature is taken to zero, different behaviors are possible. If translation symmetry breaking is irrelevant in the far IR, then
η/s
tends to a constant at
T
= 0. This constant can be parametrically small. If the translation symmetry is broken in the far IR (which nonetheless develops emergent scale invariance), then
η/s
∼
T
2
ν
as
T
→ 0, with
ν
≤ 1 in all cases we have considered. While these results violate simple bounds on
η/s
, we note that they are consistent with a possible bound on the rate of entropy production due to strain.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP03(2016)170</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Broken symmetry ; Classical and Quantum Gravitation ; Constants ; Elementary Particles ; Entropy ; Iridium ; Iridium base alloys ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Shear viscosity ; Strain ; String Theory ; Translations</subject><ispartof>The journal of high energy physics, 2016-03, Vol.2016 (3), p.1-34, Article 170</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-c57be406e6a002dbe3228eda947e0f279f473bae259a9aafa8cab0fb27a4c1893</citedby><cites>FETCH-LOGICAL-c356t-c57be406e6a002dbe3228eda947e0f279f473bae259a9aafa8cab0fb27a4c1893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP03(2016)170$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP03(2016)170$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Hartnoll, Sean A.</creatorcontrib><creatorcontrib>Ramirez, David M.</creatorcontrib><creatorcontrib>Santos, Jorge E.</creatorcontrib><title>Entropy production, viscosity bounds and bumpy black holes</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
The ratio of shear viscosity to entropy density,
η/s
, is computed in various holographic geometries that break translation invariance (but are isotropic). The shear viscosity does not have a hydrodynamic interpretation in such backgrounds, but does quantify the rate of entropy production due to a strain. Fluctuations of the metric components
δg
xy
are massive about these backgrounds, leading to
η/s <
1
/
(4
π
) at all finite temperatures (even in Einstein gravity). As the temperature is taken to zero, different behaviors are possible. If translation symmetry breaking is irrelevant in the far IR, then
η/s
tends to a constant at
T
= 0. This constant can be parametrically small. If the translation symmetry is broken in the far IR (which nonetheless develops emergent scale invariance), then
η/s
∼
T
2
ν
as
T
→ 0, with
ν
≤ 1 in all cases we have considered. While these results violate simple bounds on
η/s
, we note that they are consistent with a possible bound on the rate of entropy production due to strain.</description><subject>Broken symmetry</subject><subject>Classical and Quantum Gravitation</subject><subject>Constants</subject><subject>Elementary Particles</subject><subject>Entropy</subject><subject>Iridium</subject><subject>Iridium base alloys</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Shear viscosity</subject><subject>Strain</subject><subject>String Theory</subject><subject>Translations</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kD1PwzAQhi0EEqUws2YsEqFn58MxG6oKBVWCAWbr7DiQktrFTpD673EVBhamu-F5T-89hFxSuKEAfP60Wr5ANmNAyyvK4YhMKDCRVjkXx3_2U3IWwgaAFlTAhNwube_dbp_svKsH3bfOXiffbdAutP0-UW6wdUjQ1okathFTHerP5MN1JpyTkwa7YC5-55S83S9fF6t0_fzwuLhbpzoryj7VBVcmh9KUCMBqZTLGKlOjyLmBhnHR5DxTaFghUCA2WGlU0CjGMde0EtmUzMa7seLXYEIvt7Gf6Tq0xg1B0goqSkUpaETnI6q9C8GbRu58u0W_lxTkwZIcLcmDJRktxQSMiRBJ-2683LjB2_jPv5Ef9CtqEw</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Hartnoll, Sean A.</creator><creator>Ramirez, David M.</creator><creator>Santos, Jorge E.</creator><general>Springer Berlin Heidelberg</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160301</creationdate><title>Entropy production, viscosity bounds and bumpy black holes</title><author>Hartnoll, Sean A. ; Ramirez, David M. ; Santos, Jorge E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-c57be406e6a002dbe3228eda947e0f279f473bae259a9aafa8cab0fb27a4c1893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Broken symmetry</topic><topic>Classical and Quantum Gravitation</topic><topic>Constants</topic><topic>Elementary Particles</topic><topic>Entropy</topic><topic>Iridium</topic><topic>Iridium base alloys</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Shear viscosity</topic><topic>Strain</topic><topic>String Theory</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartnoll, Sean A.</creatorcontrib><creatorcontrib>Ramirez, David M.</creatorcontrib><creatorcontrib>Santos, Jorge E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartnoll, Sean A.</au><au>Ramirez, David M.</au><au>Santos, Jorge E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy production, viscosity bounds and bumpy black holes</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>2016</volume><issue>3</issue><spage>1</spage><epage>34</epage><pages>1-34</pages><artnum>170</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
The ratio of shear viscosity to entropy density,
η/s
, is computed in various holographic geometries that break translation invariance (but are isotropic). The shear viscosity does not have a hydrodynamic interpretation in such backgrounds, but does quantify the rate of entropy production due to a strain. Fluctuations of the metric components
δg
xy
are massive about these backgrounds, leading to
η/s <
1
/
(4
π
) at all finite temperatures (even in Einstein gravity). As the temperature is taken to zero, different behaviors are possible. If translation symmetry breaking is irrelevant in the far IR, then
η/s
tends to a constant at
T
= 0. This constant can be parametrically small. If the translation symmetry is broken in the far IR (which nonetheless develops emergent scale invariance), then
η/s
∼
T
2
ν
as
T
→ 0, with
ν
≤ 1 in all cases we have considered. While these results violate simple bounds on
η/s
, we note that they are consistent with a possible bound on the rate of entropy production due to strain.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP03(2016)170</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2016-03, Vol.2016 (3), p.1-34, Article 170 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808119691 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Broken symmetry Classical and Quantum Gravitation Constants Elementary Particles Entropy Iridium Iridium base alloys Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Shear viscosity Strain String Theory Translations |
title | Entropy production, viscosity bounds and bumpy black holes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20production,%20viscosity%20bounds%20and%20bumpy%20black%20holes&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Hartnoll,%20Sean%20A.&rft.date=2016-03-01&rft.volume=2016&rft.issue=3&rft.spage=1&rft.epage=34&rft.pages=1-34&rft.artnum=170&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP03(2016)170&rft_dat=%3Cproquest_cross%3E1808119691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808119691&rft_id=info:pmid/&rfr_iscdi=true |