Entropy production, viscosity bounds and bumpy black holes

A bstract The ratio of shear viscosity to entropy density, η/s , is computed in various holographic geometries that break translation invariance (but are isotropic). The shear viscosity does not have a hydrodynamic interpretation in such backgrounds, but does quantify the rate of entropy production...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2016-03, Vol.2016 (3), p.1-34, Article 170
Hauptverfasser: Hartnoll, Sean A., Ramirez, David M., Santos, Jorge E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 3
container_start_page 1
container_title The journal of high energy physics
container_volume 2016
creator Hartnoll, Sean A.
Ramirez, David M.
Santos, Jorge E.
description A bstract The ratio of shear viscosity to entropy density, η/s , is computed in various holographic geometries that break translation invariance (but are isotropic). The shear viscosity does not have a hydrodynamic interpretation in such backgrounds, but does quantify the rate of entropy production due to a strain. Fluctuations of the metric components δg xy are massive about these backgrounds, leading to η/s < 1 / (4 π ) at all finite temperatures (even in Einstein gravity). As the temperature is taken to zero, different behaviors are possible. If translation symmetry breaking is irrelevant in the far IR, then η/s tends to a constant at T = 0. This constant can be parametrically small. If the translation symmetry is broken in the far IR (which nonetheless develops emergent scale invariance), then η/s ∼ T 2 ν as T → 0, with ν ≤ 1 in all cases we have considered. While these results violate simple bounds on η/s , we note that they are consistent with a possible bound on the rate of entropy production due to strain.
doi_str_mv 10.1007/JHEP03(2016)170
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808119691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808119691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-c57be406e6a002dbe3228eda947e0f279f473bae259a9aafa8cab0fb27a4c1893</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUws2YsEqFn58MxG6oKBVWCAWbr7DiQktrFTpD673EVBhamu-F5T-89hFxSuKEAfP60Wr5ANmNAyyvK4YhMKDCRVjkXx3_2U3IWwgaAFlTAhNwube_dbp_svKsH3bfOXiffbdAutP0-UW6wdUjQ1okathFTHerP5MN1JpyTkwa7YC5-55S83S9fF6t0_fzwuLhbpzoryj7VBVcmh9KUCMBqZTLGKlOjyLmBhnHR5DxTaFghUCA2WGlU0CjGMde0EtmUzMa7seLXYEIvt7Gf6Tq0xg1B0goqSkUpaETnI6q9C8GbRu58u0W_lxTkwZIcLcmDJRktxQSMiRBJ-2683LjB2_jPv5Ef9CtqEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808119691</pqid></control><display><type>article</type><title>Entropy production, viscosity bounds and bumpy black holes</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Hartnoll, Sean A. ; Ramirez, David M. ; Santos, Jorge E.</creator><creatorcontrib>Hartnoll, Sean A. ; Ramirez, David M. ; Santos, Jorge E.</creatorcontrib><description>A bstract The ratio of shear viscosity to entropy density, η/s , is computed in various holographic geometries that break translation invariance (but are isotropic). The shear viscosity does not have a hydrodynamic interpretation in such backgrounds, but does quantify the rate of entropy production due to a strain. Fluctuations of the metric components δg xy are massive about these backgrounds, leading to η/s &lt; 1 / (4 π ) at all finite temperatures (even in Einstein gravity). As the temperature is taken to zero, different behaviors are possible. If translation symmetry breaking is irrelevant in the far IR, then η/s tends to a constant at T = 0. This constant can be parametrically small. If the translation symmetry is broken in the far IR (which nonetheless develops emergent scale invariance), then η/s ∼ T 2 ν as T → 0, with ν ≤ 1 in all cases we have considered. While these results violate simple bounds on η/s , we note that they are consistent with a possible bound on the rate of entropy production due to strain.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP03(2016)170</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Broken symmetry ; Classical and Quantum Gravitation ; Constants ; Elementary Particles ; Entropy ; Iridium ; Iridium base alloys ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Shear viscosity ; Strain ; String Theory ; Translations</subject><ispartof>The journal of high energy physics, 2016-03, Vol.2016 (3), p.1-34, Article 170</ispartof><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-c57be406e6a002dbe3228eda947e0f279f473bae259a9aafa8cab0fb27a4c1893</citedby><cites>FETCH-LOGICAL-c356t-c57be406e6a002dbe3228eda947e0f279f473bae259a9aafa8cab0fb27a4c1893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP03(2016)170$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP03(2016)170$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Hartnoll, Sean A.</creatorcontrib><creatorcontrib>Ramirez, David M.</creatorcontrib><creatorcontrib>Santos, Jorge E.</creatorcontrib><title>Entropy production, viscosity bounds and bumpy black holes</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract The ratio of shear viscosity to entropy density, η/s , is computed in various holographic geometries that break translation invariance (but are isotropic). The shear viscosity does not have a hydrodynamic interpretation in such backgrounds, but does quantify the rate of entropy production due to a strain. Fluctuations of the metric components δg xy are massive about these backgrounds, leading to η/s &lt; 1 / (4 π ) at all finite temperatures (even in Einstein gravity). As the temperature is taken to zero, different behaviors are possible. If translation symmetry breaking is irrelevant in the far IR, then η/s tends to a constant at T = 0. This constant can be parametrically small. If the translation symmetry is broken in the far IR (which nonetheless develops emergent scale invariance), then η/s ∼ T 2 ν as T → 0, with ν ≤ 1 in all cases we have considered. While these results violate simple bounds on η/s , we note that they are consistent with a possible bound on the rate of entropy production due to strain.</description><subject>Broken symmetry</subject><subject>Classical and Quantum Gravitation</subject><subject>Constants</subject><subject>Elementary Particles</subject><subject>Entropy</subject><subject>Iridium</subject><subject>Iridium base alloys</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Shear viscosity</subject><subject>Strain</subject><subject>String Theory</subject><subject>Translations</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kD1PwzAQhi0EEqUws2YsEqFn58MxG6oKBVWCAWbr7DiQktrFTpD673EVBhamu-F5T-89hFxSuKEAfP60Wr5ANmNAyyvK4YhMKDCRVjkXx3_2U3IWwgaAFlTAhNwube_dbp_svKsH3bfOXiffbdAutP0-UW6wdUjQ1okathFTHerP5MN1JpyTkwa7YC5-55S83S9fF6t0_fzwuLhbpzoryj7VBVcmh9KUCMBqZTLGKlOjyLmBhnHR5DxTaFghUCA2WGlU0CjGMde0EtmUzMa7seLXYEIvt7Gf6Tq0xg1B0goqSkUpaETnI6q9C8GbRu58u0W_lxTkwZIcLcmDJRktxQSMiRBJ-2683LjB2_jPv5Ef9CtqEw</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Hartnoll, Sean A.</creator><creator>Ramirez, David M.</creator><creator>Santos, Jorge E.</creator><general>Springer Berlin Heidelberg</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160301</creationdate><title>Entropy production, viscosity bounds and bumpy black holes</title><author>Hartnoll, Sean A. ; Ramirez, David M. ; Santos, Jorge E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-c57be406e6a002dbe3228eda947e0f279f473bae259a9aafa8cab0fb27a4c1893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Broken symmetry</topic><topic>Classical and Quantum Gravitation</topic><topic>Constants</topic><topic>Elementary Particles</topic><topic>Entropy</topic><topic>Iridium</topic><topic>Iridium base alloys</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Shear viscosity</topic><topic>Strain</topic><topic>String Theory</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartnoll, Sean A.</creatorcontrib><creatorcontrib>Ramirez, David M.</creatorcontrib><creatorcontrib>Santos, Jorge E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartnoll, Sean A.</au><au>Ramirez, David M.</au><au>Santos, Jorge E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy production, viscosity bounds and bumpy black holes</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>2016</volume><issue>3</issue><spage>1</spage><epage>34</epage><pages>1-34</pages><artnum>170</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract The ratio of shear viscosity to entropy density, η/s , is computed in various holographic geometries that break translation invariance (but are isotropic). The shear viscosity does not have a hydrodynamic interpretation in such backgrounds, but does quantify the rate of entropy production due to a strain. Fluctuations of the metric components δg xy are massive about these backgrounds, leading to η/s &lt; 1 / (4 π ) at all finite temperatures (even in Einstein gravity). As the temperature is taken to zero, different behaviors are possible. If translation symmetry breaking is irrelevant in the far IR, then η/s tends to a constant at T = 0. This constant can be parametrically small. If the translation symmetry is broken in the far IR (which nonetheless develops emergent scale invariance), then η/s ∼ T 2 ν as T → 0, with ν ≤ 1 in all cases we have considered. While these results violate simple bounds on η/s , we note that they are consistent with a possible bound on the rate of entropy production due to strain.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP03(2016)170</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2016-03, Vol.2016 (3), p.1-34, Article 170
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_miscellaneous_1808119691
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Broken symmetry
Classical and Quantum Gravitation
Constants
Elementary Particles
Entropy
Iridium
Iridium base alloys
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Shear viscosity
Strain
String Theory
Translations
title Entropy production, viscosity bounds and bumpy black holes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20production,%20viscosity%20bounds%20and%20bumpy%20black%20holes&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Hartnoll,%20Sean%20A.&rft.date=2016-03-01&rft.volume=2016&rft.issue=3&rft.spage=1&rft.epage=34&rft.pages=1-34&rft.artnum=170&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP03(2016)170&rft_dat=%3Cproquest_cross%3E1808119691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808119691&rft_id=info:pmid/&rfr_iscdi=true