On an inverse boundary problem for the heat equation when small heat conductivity defects are present in a material
For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asympt...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Mechanik 2016-03, Vol.96 (3), p.327-343 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 343 |
---|---|
container_issue | 3 |
container_start_page | 327 |
container_title | Zeitschrift für angewandte Mathematik und Mechanik |
container_volume | 96 |
creator | Bouraoui, M. Asmi, L. El Khelifi, A. |
description | For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asymptotic method based on appropriate averaging of the partial dynamic boundary measurements. Our approach is expected to lead to very effective computational identification algorithms.
For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asymptotic method based on appropriate averaging of the partial dynamic boundary measurements. Our approach is expected to lead to very effective computational identification algorithms. |
doi_str_mv | 10.1002/zamm.201300265 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808118447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808118447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4135-8e3c902698823e7a94336e84b536d9ce91585568320825ce016d2d76f48b7f9d3</originalsourceid><addsrcrecordid>eNqFkb1vFDEQxS1EJI6ENrUlGpq9-NveMkQQEPlogEhpLJ93Vuew601sb8Lx18fRogjRpBp5_HtPM_MQOqRkTQlhR3_cOK4Zobw-lHyFVlQy2ghC6Gu0IkSIhjGl36C3Od-Q2m0pX6F8GbGLOMR7SBnwZppj59IO36ZpM8CI-ynhsgW8BVcw3M2uhCnihy1EnEc3DMuHn2I3-xLuQ9nhDnrwJWOXoNpAhliqP3Z4dAVScMMB2uvdkOHd37qPfnz-9P3kS3N2efr15Pis8YJy2Rjgvq2rtMYwDtq1gnMFRmwkV13roaXSSKkMZ8Qw6YFQ1bFOq16Yje7bju-jD4tvXeZuhlzsGLKHYXARpjlbaoih1AihK_r-P_RmmlOs01mqlTGaSC4qtV4on6acE_T2NoWxnstSYp8ysE8Z2OcMqqBdBA9hgN0LtL0-Pj__V9ss2pAL_H7WuvTLKs21tFcXp_ZnPcFHfvXNav4IKHOZiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1768870534</pqid></control><display><type>article</type><title>On an inverse boundary problem for the heat equation when small heat conductivity defects are present in a material</title><source>Wiley Online Library All Journals</source><creator>Bouraoui, M. ; Asmi, L. El ; Khelifi, A.</creator><creatorcontrib>Bouraoui, M. ; Asmi, L. El ; Khelifi, A.</creatorcontrib><description>For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asymptotic method based on appropriate averaging of the partial dynamic boundary measurements. Our approach is expected to lead to very effective computational identification algorithms.
For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asymptotic method based on appropriate averaging of the partial dynamic boundary measurements. Our approach is expected to lead to very effective computational identification algorithms.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201300265</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>35B37 ; 35K05 ; 35R30 ; Asymptotic methods ; Boundaries ; Dynamic mechanical properties ; Dynamics ; heat equation ; Heat equations ; Inhomogeneities ; Inverse problem ; Inverse problems ; Mathematical analysis ; reconstruction</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2016-03, Vol.96 (3), p.327-343</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4135-8e3c902698823e7a94336e84b536d9ce91585568320825ce016d2d76f48b7f9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.201300265$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.201300265$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bouraoui, M.</creatorcontrib><creatorcontrib>Asmi, L. El</creatorcontrib><creatorcontrib>Khelifi, A.</creatorcontrib><title>On an inverse boundary problem for the heat equation when small heat conductivity defects are present in a material</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. Angew. Math. Mech</addtitle><description>For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asymptotic method based on appropriate averaging of the partial dynamic boundary measurements. Our approach is expected to lead to very effective computational identification algorithms.
For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asymptotic method based on appropriate averaging of the partial dynamic boundary measurements. Our approach is expected to lead to very effective computational identification algorithms.</description><subject>35B37</subject><subject>35K05</subject><subject>35R30</subject><subject>Asymptotic methods</subject><subject>Boundaries</subject><subject>Dynamic mechanical properties</subject><subject>Dynamics</subject><subject>heat equation</subject><subject>Heat equations</subject><subject>Inhomogeneities</subject><subject>Inverse problem</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>reconstruction</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkb1vFDEQxS1EJI6ENrUlGpq9-NveMkQQEPlogEhpLJ93Vuew601sb8Lx18fRogjRpBp5_HtPM_MQOqRkTQlhR3_cOK4Zobw-lHyFVlQy2ghC6Gu0IkSIhjGl36C3Od-Q2m0pX6F8GbGLOMR7SBnwZppj59IO36ZpM8CI-ynhsgW8BVcw3M2uhCnihy1EnEc3DMuHn2I3-xLuQ9nhDnrwJWOXoNpAhliqP3Z4dAVScMMB2uvdkOHd37qPfnz-9P3kS3N2efr15Pis8YJy2Rjgvq2rtMYwDtq1gnMFRmwkV13roaXSSKkMZ8Qw6YFQ1bFOq16Yje7bju-jD4tvXeZuhlzsGLKHYXARpjlbaoih1AihK_r-P_RmmlOs01mqlTGaSC4qtV4on6acE_T2NoWxnstSYp8ysE8Z2OcMqqBdBA9hgN0LtL0-Pj__V9ss2pAL_H7WuvTLKs21tFcXp_ZnPcFHfvXNav4IKHOZiQ</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Bouraoui, M.</creator><creator>Asmi, L. El</creator><creator>Khelifi, A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201603</creationdate><title>On an inverse boundary problem for the heat equation when small heat conductivity defects are present in a material</title><author>Bouraoui, M. ; Asmi, L. El ; Khelifi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4135-8e3c902698823e7a94336e84b536d9ce91585568320825ce016d2d76f48b7f9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>35B37</topic><topic>35K05</topic><topic>35R30</topic><topic>Asymptotic methods</topic><topic>Boundaries</topic><topic>Dynamic mechanical properties</topic><topic>Dynamics</topic><topic>heat equation</topic><topic>Heat equations</topic><topic>Inhomogeneities</topic><topic>Inverse problem</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouraoui, M.</creatorcontrib><creatorcontrib>Asmi, L. El</creatorcontrib><creatorcontrib>Khelifi, A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouraoui, M.</au><au>Asmi, L. El</au><au>Khelifi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On an inverse boundary problem for the heat equation when small heat conductivity defects are present in a material</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. Angew. Math. Mech</addtitle><date>2016-03</date><risdate>2016</risdate><volume>96</volume><issue>3</issue><spage>327</spage><epage>343</epage><pages>327-343</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asymptotic method based on appropriate averaging of the partial dynamic boundary measurements. Our approach is expected to lead to very effective computational identification algorithms.
For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asymptotic method based on appropriate averaging of the partial dynamic boundary measurements. Our approach is expected to lead to very effective computational identification algorithms.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/zamm.201300265</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2267 |
ispartof | Zeitschrift für angewandte Mathematik und Mechanik, 2016-03, Vol.96 (3), p.327-343 |
issn | 0044-2267 1521-4001 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808118447 |
source | Wiley Online Library All Journals |
subjects | 35B37 35K05 35R30 Asymptotic methods Boundaries Dynamic mechanical properties Dynamics heat equation Heat equations Inhomogeneities Inverse problem Inverse problems Mathematical analysis reconstruction |
title | On an inverse boundary problem for the heat equation when small heat conductivity defects are present in a material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A29%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20an%20inverse%20boundary%20problem%20for%20the%20heat%20equation%20when%20small%20heat%20conductivity%20defects%20are%20present%20in%20a%20material&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Bouraoui,%20M.&rft.date=2016-03&rft.volume=96&rft.issue=3&rft.spage=327&rft.epage=343&rft.pages=327-343&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201300265&rft_dat=%3Cproquest_cross%3E1808118447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1768870534&rft_id=info:pmid/&rfr_iscdi=true |