On an inverse boundary problem for the heat equation when small heat conductivity defects are present in a material

For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asympt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Mechanik 2016-03, Vol.96 (3), p.327-343
Hauptverfasser: Bouraoui, M., Asmi, L. El, Khelifi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 343
container_issue 3
container_start_page 327
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 96
creator Bouraoui, M.
Asmi, L. El
Khelifi, A.
description For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asymptotic method based on appropriate averaging of the partial dynamic boundary measurements. Our approach is expected to lead to very effective computational identification algorithms. For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asymptotic method based on appropriate averaging of the partial dynamic boundary measurements. Our approach is expected to lead to very effective computational identification algorithms.
doi_str_mv 10.1002/zamm.201300265
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808118447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808118447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4135-8e3c902698823e7a94336e84b536d9ce91585568320825ce016d2d76f48b7f9d3</originalsourceid><addsrcrecordid>eNqFkb1vFDEQxS1EJI6ENrUlGpq9-NveMkQQEPlogEhpLJ93Vuew601sb8Lx18fRogjRpBp5_HtPM_MQOqRkTQlhR3_cOK4Zobw-lHyFVlQy2ghC6Gu0IkSIhjGl36C3Od-Q2m0pX6F8GbGLOMR7SBnwZppj59IO36ZpM8CI-ynhsgW8BVcw3M2uhCnihy1EnEc3DMuHn2I3-xLuQ9nhDnrwJWOXoNpAhliqP3Z4dAVScMMB2uvdkOHd37qPfnz-9P3kS3N2efr15Pis8YJy2Rjgvq2rtMYwDtq1gnMFRmwkV13roaXSSKkMZ8Qw6YFQ1bFOq16Yje7bju-jD4tvXeZuhlzsGLKHYXARpjlbaoih1AihK_r-P_RmmlOs01mqlTGaSC4qtV4on6acE_T2NoWxnstSYp8ysE8Z2OcMqqBdBA9hgN0LtL0-Pj__V9ss2pAL_H7WuvTLKs21tFcXp_ZnPcFHfvXNav4IKHOZiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1768870534</pqid></control><display><type>article</type><title>On an inverse boundary problem for the heat equation when small heat conductivity defects are present in a material</title><source>Wiley Online Library All Journals</source><creator>Bouraoui, M. ; Asmi, L. El ; Khelifi, A.</creator><creatorcontrib>Bouraoui, M. ; Asmi, L. El ; Khelifi, A.</creatorcontrib><description>For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asymptotic method based on appropriate averaging of the partial dynamic boundary measurements. Our approach is expected to lead to very effective computational identification algorithms. For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asymptotic method based on appropriate averaging of the partial dynamic boundary measurements. Our approach is expected to lead to very effective computational identification algorithms.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201300265</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>35B37 ; 35K05 ; 35R30 ; Asymptotic methods ; Boundaries ; Dynamic mechanical properties ; Dynamics ; heat equation ; Heat equations ; Inhomogeneities ; Inverse problem ; Inverse problems ; Mathematical analysis ; reconstruction</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2016-03, Vol.96 (3), p.327-343</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4135-8e3c902698823e7a94336e84b536d9ce91585568320825ce016d2d76f48b7f9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.201300265$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.201300265$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bouraoui, M.</creatorcontrib><creatorcontrib>Asmi, L. El</creatorcontrib><creatorcontrib>Khelifi, A.</creatorcontrib><title>On an inverse boundary problem for the heat equation when small heat conductivity defects are present in a material</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. Angew. Math. Mech</addtitle><description>For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asymptotic method based on appropriate averaging of the partial dynamic boundary measurements. Our approach is expected to lead to very effective computational identification algorithms. For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asymptotic method based on appropriate averaging of the partial dynamic boundary measurements. Our approach is expected to lead to very effective computational identification algorithms.</description><subject>35B37</subject><subject>35K05</subject><subject>35R30</subject><subject>Asymptotic methods</subject><subject>Boundaries</subject><subject>Dynamic mechanical properties</subject><subject>Dynamics</subject><subject>heat equation</subject><subject>Heat equations</subject><subject>Inhomogeneities</subject><subject>Inverse problem</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>reconstruction</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkb1vFDEQxS1EJI6ENrUlGpq9-NveMkQQEPlogEhpLJ93Vuew601sb8Lx18fRogjRpBp5_HtPM_MQOqRkTQlhR3_cOK4Zobw-lHyFVlQy2ghC6Gu0IkSIhjGl36C3Od-Q2m0pX6F8GbGLOMR7SBnwZppj59IO36ZpM8CI-ynhsgW8BVcw3M2uhCnihy1EnEc3DMuHn2I3-xLuQ9nhDnrwJWOXoNpAhliqP3Z4dAVScMMB2uvdkOHd37qPfnz-9P3kS3N2efr15Pis8YJy2Rjgvq2rtMYwDtq1gnMFRmwkV13roaXSSKkMZ8Qw6YFQ1bFOq16Yje7bju-jD4tvXeZuhlzsGLKHYXARpjlbaoih1AihK_r-P_RmmlOs01mqlTGaSC4qtV4on6acE_T2NoWxnstSYp8ysE8Z2OcMqqBdBA9hgN0LtL0-Pj__V9ss2pAL_H7WuvTLKs21tFcXp_ZnPcFHfvXNav4IKHOZiQ</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Bouraoui, M.</creator><creator>Asmi, L. El</creator><creator>Khelifi, A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201603</creationdate><title>On an inverse boundary problem for the heat equation when small heat conductivity defects are present in a material</title><author>Bouraoui, M. ; Asmi, L. El ; Khelifi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4135-8e3c902698823e7a94336e84b536d9ce91585568320825ce016d2d76f48b7f9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>35B37</topic><topic>35K05</topic><topic>35R30</topic><topic>Asymptotic methods</topic><topic>Boundaries</topic><topic>Dynamic mechanical properties</topic><topic>Dynamics</topic><topic>heat equation</topic><topic>Heat equations</topic><topic>Inhomogeneities</topic><topic>Inverse problem</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouraoui, M.</creatorcontrib><creatorcontrib>Asmi, L. El</creatorcontrib><creatorcontrib>Khelifi, A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouraoui, M.</au><au>Asmi, L. El</au><au>Khelifi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On an inverse boundary problem for the heat equation when small heat conductivity defects are present in a material</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. Angew. Math. Mech</addtitle><date>2016-03</date><risdate>2016</risdate><volume>96</volume><issue>3</issue><spage>327</spage><epage>343</epage><pages>327-343</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asymptotic method based on appropriate averaging of the partial dynamic boundary measurements. Our approach is expected to lead to very effective computational identification algorithms. For the heat equation in a bounded domain we consider the inverse problem of identifying locations and certain properties of the shapes of small heat‐conducting inhomogeneities from dynamic boundary measurements on part of the boundary and for finite interval in time. The key ingredient is an asymptotic method based on appropriate averaging of the partial dynamic boundary measurements. Our approach is expected to lead to very effective computational identification algorithms.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/zamm.201300265</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2016-03, Vol.96 (3), p.327-343
issn 0044-2267
1521-4001
language eng
recordid cdi_proquest_miscellaneous_1808118447
source Wiley Online Library All Journals
subjects 35B37
35K05
35R30
Asymptotic methods
Boundaries
Dynamic mechanical properties
Dynamics
heat equation
Heat equations
Inhomogeneities
Inverse problem
Inverse problems
Mathematical analysis
reconstruction
title On an inverse boundary problem for the heat equation when small heat conductivity defects are present in a material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A29%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20an%20inverse%20boundary%20problem%20for%20the%20heat%20equation%20when%20small%20heat%20conductivity%20defects%20are%20present%20in%20a%20material&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Bouraoui,%20M.&rft.date=2016-03&rft.volume=96&rft.issue=3&rft.spage=327&rft.epage=343&rft.pages=327-343&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201300265&rft_dat=%3Cproquest_cross%3E1808118447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1768870534&rft_id=info:pmid/&rfr_iscdi=true