Nitrogen doped anatase-rutile heterostructured nanotubes for enhanced photocatalytic hydrogen production: Promising structure for sustainable fuel production

Nitrogen doped anatase-rutile heterostructure nanotubes were prepared by controlled ammonia annealing of TiO2 nanotubes synthesized by rapid break down anodization technique. The presence of anatase and rutile phases in a single nano-tube is confirmed by HRTEM. X-ray photoelectron spectroscopy confi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2016-04, Vol.41 (14), p.5865-5877
Hauptverfasser: Preethi, L.K., Antony, Rajini P., Mathews, Tom, Loo, S.C.J., Wong, Lydia H., Dash, S., Tyagi, A.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5877
container_issue 14
container_start_page 5865
container_title International journal of hydrogen energy
container_volume 41
creator Preethi, L.K.
Antony, Rajini P.
Mathews, Tom
Loo, S.C.J.
Wong, Lydia H.
Dash, S.
Tyagi, A.K.
description Nitrogen doped anatase-rutile heterostructure nanotubes were prepared by controlled ammonia annealing of TiO2 nanotubes synthesized by rapid break down anodization technique. The presence of anatase and rutile phases in a single nano-tube is confirmed by HRTEM. X-ray photoelectron spectroscopy confirmed the presence of oxygen vacancy and N-doping. The band gap studies revealed visible light absorption of the N-doped samples and Mott–Schottky analysis showed cathodic shift in flat band potential for the N doped samples indicating an increase in n-type conductivity. The photoelectrochemical studies revealed higher photocurrent and photon to current conversion efficiency for N-doped samples supporting the Mott Schottky results. The photo-catalysts were prepared by loading Pt on to the pristine and N-doped nanotubes by NaBH4 reduction. The synergistic role of non-stoichiometry and Pt loading towards photocatalytic activity is demonstrated from the H2 generation studies by water splitting. The enhanced photocatalytic performance of the Pt loaded N–TiO2 nanotubes is ascertained from the H2 generation rate of ∼30 mmol h−1 g−1, which is one of the highest observed rate under simulated solar radiation of 1.5 AM as well as visible light. The significance of surface area, mesoporous structure and visible light absorption in enhancing H2 generation is ascertained by BET and band gap studies. The present strategy of preparing high surface area Pt loaded N doped anatase-rutile TiO2 heterostructure nanotubes is a promising method for the synthesis of highly efficient composite photocatalysts for solar light harvesting. [Display omitted] •Visible light active Pt/N- anatase/rutile nanotubular catalysts were synthesized.•HRTEM, XRD and XPS revealed anatase/rutile heterostructured N-doped TiO2 nanotubes.•H2 generation of ∼30 mmol h−1g−1 (highest reported value) was obtained under 1.5 AM.•BET/DRS ascertained the role of surface area and N-doping in enhancing H2 production.
doi_str_mv 10.1016/j.ijhydene.2016.02.125
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808116950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319915313689</els_id><sourcerecordid>1808116950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-dd17a4f8c017e3e4b94d66b6817eb69bec49533e8f3f2f9f2ce9b305904ab22d3</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0EEqXwCyhLNgl-JGnMCoR4SQhYwNpy7HHrKtjFdpD6MfwrLgXEjpU1njl3HhehY4Irgkl7uqzscrHW4KCiOa4wrQhtdtCEdDNesrqb7aIJZi0uGeF8Hx3EuMSYzHDNJ-jjwabg5-AK7VegC-lkkhHKMCY7QLGABMHHFEaVxpDzTjqfxh5iYXwowC2kU_l7tfDJq4wO62RVkcfZiq6C1xm13p0VT8G_2mjdvPjV-xKJY0zSOtnnfmaE4Q90iPaMHCIcfb9T9HJ99Xx5W94_3txdXtyXqqE0lVqTmaxNp_JWwKDuea3btm-7HPYt70HVvGEMOsMMNdxQBbxnuOG4lj2lmk3RyVY3t34bISaRJ1UwDNKBH6MgHe4IaXmDc2m7LVX5LjGAEatgX2VYC4LFxg-xFD9-iI0fAlOR_cjg-RaEvMi7hSCisrC5ng2gktDe_ifxCbaZnjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808116950</pqid></control><display><type>article</type><title>Nitrogen doped anatase-rutile heterostructured nanotubes for enhanced photocatalytic hydrogen production: Promising structure for sustainable fuel production</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Preethi, L.K. ; Antony, Rajini P. ; Mathews, Tom ; Loo, S.C.J. ; Wong, Lydia H. ; Dash, S. ; Tyagi, A.K.</creator><creatorcontrib>Preethi, L.K. ; Antony, Rajini P. ; Mathews, Tom ; Loo, S.C.J. ; Wong, Lydia H. ; Dash, S. ; Tyagi, A.K.</creatorcontrib><description>Nitrogen doped anatase-rutile heterostructure nanotubes were prepared by controlled ammonia annealing of TiO2 nanotubes synthesized by rapid break down anodization technique. The presence of anatase and rutile phases in a single nano-tube is confirmed by HRTEM. X-ray photoelectron spectroscopy confirmed the presence of oxygen vacancy and N-doping. The band gap studies revealed visible light absorption of the N-doped samples and Mott–Schottky analysis showed cathodic shift in flat band potential for the N doped samples indicating an increase in n-type conductivity. The photoelectrochemical studies revealed higher photocurrent and photon to current conversion efficiency for N-doped samples supporting the Mott Schottky results. The photo-catalysts were prepared by loading Pt on to the pristine and N-doped nanotubes by NaBH4 reduction. The synergistic role of non-stoichiometry and Pt loading towards photocatalytic activity is demonstrated from the H2 generation studies by water splitting. The enhanced photocatalytic performance of the Pt loaded N–TiO2 nanotubes is ascertained from the H2 generation rate of ∼30 mmol h−1 g−1, which is one of the highest observed rate under simulated solar radiation of 1.5 AM as well as visible light. The significance of surface area, mesoporous structure and visible light absorption in enhancing H2 generation is ascertained by BET and band gap studies. The present strategy of preparing high surface area Pt loaded N doped anatase-rutile TiO2 heterostructure nanotubes is a promising method for the synthesis of highly efficient composite photocatalysts for solar light harvesting. [Display omitted] •Visible light active Pt/N- anatase/rutile nanotubular catalysts were synthesized.•HRTEM, XRD and XPS revealed anatase/rutile heterostructured N-doped TiO2 nanotubes.•H2 generation of ∼30 mmol h−1g−1 (highest reported value) was obtained under 1.5 AM.•BET/DRS ascertained the role of surface area and N-doping in enhancing H2 production.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2016.02.125</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anatase ; H2 generation ; Heterostructures ; Light absorption ; N doped TiO2 ; Nanotubes ; Photocatalysis ; Photocatalytic water splitting ; Platinum ; Rapid breakdown anodization ; Solar fuels ; Surface area ; Titanium dioxide ; XPS</subject><ispartof>International journal of hydrogen energy, 2016-04, Vol.41 (14), p.5865-5877</ispartof><rights>2016 Hydrogen Energy Publications, LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-dd17a4f8c017e3e4b94d66b6817eb69bec49533e8f3f2f9f2ce9b305904ab22d3</citedby><cites>FETCH-LOGICAL-c522t-dd17a4f8c017e3e4b94d66b6817eb69bec49533e8f3f2f9f2ce9b305904ab22d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319915313689$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Preethi, L.K.</creatorcontrib><creatorcontrib>Antony, Rajini P.</creatorcontrib><creatorcontrib>Mathews, Tom</creatorcontrib><creatorcontrib>Loo, S.C.J.</creatorcontrib><creatorcontrib>Wong, Lydia H.</creatorcontrib><creatorcontrib>Dash, S.</creatorcontrib><creatorcontrib>Tyagi, A.K.</creatorcontrib><title>Nitrogen doped anatase-rutile heterostructured nanotubes for enhanced photocatalytic hydrogen production: Promising structure for sustainable fuel production</title><title>International journal of hydrogen energy</title><description>Nitrogen doped anatase-rutile heterostructure nanotubes were prepared by controlled ammonia annealing of TiO2 nanotubes synthesized by rapid break down anodization technique. The presence of anatase and rutile phases in a single nano-tube is confirmed by HRTEM. X-ray photoelectron spectroscopy confirmed the presence of oxygen vacancy and N-doping. The band gap studies revealed visible light absorption of the N-doped samples and Mott–Schottky analysis showed cathodic shift in flat band potential for the N doped samples indicating an increase in n-type conductivity. The photoelectrochemical studies revealed higher photocurrent and photon to current conversion efficiency for N-doped samples supporting the Mott Schottky results. The photo-catalysts were prepared by loading Pt on to the pristine and N-doped nanotubes by NaBH4 reduction. The synergistic role of non-stoichiometry and Pt loading towards photocatalytic activity is demonstrated from the H2 generation studies by water splitting. The enhanced photocatalytic performance of the Pt loaded N–TiO2 nanotubes is ascertained from the H2 generation rate of ∼30 mmol h−1 g−1, which is one of the highest observed rate under simulated solar radiation of 1.5 AM as well as visible light. The significance of surface area, mesoporous structure and visible light absorption in enhancing H2 generation is ascertained by BET and band gap studies. The present strategy of preparing high surface area Pt loaded N doped anatase-rutile TiO2 heterostructure nanotubes is a promising method for the synthesis of highly efficient composite photocatalysts for solar light harvesting. [Display omitted] •Visible light active Pt/N- anatase/rutile nanotubular catalysts were synthesized.•HRTEM, XRD and XPS revealed anatase/rutile heterostructured N-doped TiO2 nanotubes.•H2 generation of ∼30 mmol h−1g−1 (highest reported value) was obtained under 1.5 AM.•BET/DRS ascertained the role of surface area and N-doping in enhancing H2 production.</description><subject>Anatase</subject><subject>H2 generation</subject><subject>Heterostructures</subject><subject>Light absorption</subject><subject>N doped TiO2</subject><subject>Nanotubes</subject><subject>Photocatalysis</subject><subject>Photocatalytic water splitting</subject><subject>Platinum</subject><subject>Rapid breakdown anodization</subject><subject>Solar fuels</subject><subject>Surface area</subject><subject>Titanium dioxide</subject><subject>XPS</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkctOwzAQRS0EEqXwCyhLNgl-JGnMCoR4SQhYwNpy7HHrKtjFdpD6MfwrLgXEjpU1njl3HhehY4Irgkl7uqzscrHW4KCiOa4wrQhtdtCEdDNesrqb7aIJZi0uGeF8Hx3EuMSYzHDNJ-jjwabg5-AK7VegC-lkkhHKMCY7QLGABMHHFEaVxpDzTjqfxh5iYXwowC2kU_l7tfDJq4wO62RVkcfZiq6C1xm13p0VT8G_2mjdvPjV-xKJY0zSOtnnfmaE4Q90iPaMHCIcfb9T9HJ99Xx5W94_3txdXtyXqqE0lVqTmaxNp_JWwKDuea3btm-7HPYt70HVvGEMOsMMNdxQBbxnuOG4lj2lmk3RyVY3t34bISaRJ1UwDNKBH6MgHe4IaXmDc2m7LVX5LjGAEatgX2VYC4LFxg-xFD9-iI0fAlOR_cjg-RaEvMi7hSCisrC5ng2gktDe_ifxCbaZnjQ</recordid><startdate>20160420</startdate><enddate>20160420</enddate><creator>Preethi, L.K.</creator><creator>Antony, Rajini P.</creator><creator>Mathews, Tom</creator><creator>Loo, S.C.J.</creator><creator>Wong, Lydia H.</creator><creator>Dash, S.</creator><creator>Tyagi, A.K.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160420</creationdate><title>Nitrogen doped anatase-rutile heterostructured nanotubes for enhanced photocatalytic hydrogen production: Promising structure for sustainable fuel production</title><author>Preethi, L.K. ; Antony, Rajini P. ; Mathews, Tom ; Loo, S.C.J. ; Wong, Lydia H. ; Dash, S. ; Tyagi, A.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-dd17a4f8c017e3e4b94d66b6817eb69bec49533e8f3f2f9f2ce9b305904ab22d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anatase</topic><topic>H2 generation</topic><topic>Heterostructures</topic><topic>Light absorption</topic><topic>N doped TiO2</topic><topic>Nanotubes</topic><topic>Photocatalysis</topic><topic>Photocatalytic water splitting</topic><topic>Platinum</topic><topic>Rapid breakdown anodization</topic><topic>Solar fuels</topic><topic>Surface area</topic><topic>Titanium dioxide</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Preethi, L.K.</creatorcontrib><creatorcontrib>Antony, Rajini P.</creatorcontrib><creatorcontrib>Mathews, Tom</creatorcontrib><creatorcontrib>Loo, S.C.J.</creatorcontrib><creatorcontrib>Wong, Lydia H.</creatorcontrib><creatorcontrib>Dash, S.</creatorcontrib><creatorcontrib>Tyagi, A.K.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Preethi, L.K.</au><au>Antony, Rajini P.</au><au>Mathews, Tom</au><au>Loo, S.C.J.</au><au>Wong, Lydia H.</au><au>Dash, S.</au><au>Tyagi, A.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen doped anatase-rutile heterostructured nanotubes for enhanced photocatalytic hydrogen production: Promising structure for sustainable fuel production</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2016-04-20</date><risdate>2016</risdate><volume>41</volume><issue>14</issue><spage>5865</spage><epage>5877</epage><pages>5865-5877</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><abstract>Nitrogen doped anatase-rutile heterostructure nanotubes were prepared by controlled ammonia annealing of TiO2 nanotubes synthesized by rapid break down anodization technique. The presence of anatase and rutile phases in a single nano-tube is confirmed by HRTEM. X-ray photoelectron spectroscopy confirmed the presence of oxygen vacancy and N-doping. The band gap studies revealed visible light absorption of the N-doped samples and Mott–Schottky analysis showed cathodic shift in flat band potential for the N doped samples indicating an increase in n-type conductivity. The photoelectrochemical studies revealed higher photocurrent and photon to current conversion efficiency for N-doped samples supporting the Mott Schottky results. The photo-catalysts were prepared by loading Pt on to the pristine and N-doped nanotubes by NaBH4 reduction. The synergistic role of non-stoichiometry and Pt loading towards photocatalytic activity is demonstrated from the H2 generation studies by water splitting. The enhanced photocatalytic performance of the Pt loaded N–TiO2 nanotubes is ascertained from the H2 generation rate of ∼30 mmol h−1 g−1, which is one of the highest observed rate under simulated solar radiation of 1.5 AM as well as visible light. The significance of surface area, mesoporous structure and visible light absorption in enhancing H2 generation is ascertained by BET and band gap studies. The present strategy of preparing high surface area Pt loaded N doped anatase-rutile TiO2 heterostructure nanotubes is a promising method for the synthesis of highly efficient composite photocatalysts for solar light harvesting. [Display omitted] •Visible light active Pt/N- anatase/rutile nanotubular catalysts were synthesized.•HRTEM, XRD and XPS revealed anatase/rutile heterostructured N-doped TiO2 nanotubes.•H2 generation of ∼30 mmol h−1g−1 (highest reported value) was obtained under 1.5 AM.•BET/DRS ascertained the role of surface area and N-doping in enhancing H2 production.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2016.02.125</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2016-04, Vol.41 (14), p.5865-5877
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_1808116950
source Elsevier ScienceDirect Journals Complete
subjects Anatase
H2 generation
Heterostructures
Light absorption
N doped TiO2
Nanotubes
Photocatalysis
Photocatalytic water splitting
Platinum
Rapid breakdown anodization
Solar fuels
Surface area
Titanium dioxide
XPS
title Nitrogen doped anatase-rutile heterostructured nanotubes for enhanced photocatalytic hydrogen production: Promising structure for sustainable fuel production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20doped%20anatase-rutile%20heterostructured%20nanotubes%20for%20enhanced%20photocatalytic%20hydrogen%20production:%20Promising%20structure%20for%20sustainable%20fuel%20production&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Preethi,%20L.K.&rft.date=2016-04-20&rft.volume=41&rft.issue=14&rft.spage=5865&rft.epage=5877&rft.pages=5865-5877&rft.issn=0360-3199&rft.eissn=1879-3487&rft_id=info:doi/10.1016/j.ijhydene.2016.02.125&rft_dat=%3Cproquest_cross%3E1808116950%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808116950&rft_id=info:pmid/&rft_els_id=S0360319915313689&rfr_iscdi=true