BLM-Rank: A Bayesian Linear Method for Learning to Rank and Its GPU Implementation

Ranking as an important task in information systems has many applications, such as document/webpage retrieval, collaborative filtering and advertising. The last decade has witnessed a growing interest in the study of learning to rank as a means to leverage training information in a system. In this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2016/04/01, Vol.E99.D(4), pp.896-905
Hauptverfasser: GUO, Huifeng, CHU, Dianhui, YE, Yunming, LI, Xutao, FAN, Xixian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 905
container_issue 4
container_start_page 896
container_title IEICE Transactions on Information and Systems
container_volume E99.D
creator GUO, Huifeng
CHU, Dianhui
YE, Yunming
LI, Xutao
FAN, Xixian
description Ranking as an important task in information systems has many applications, such as document/webpage retrieval, collaborative filtering and advertising. The last decade has witnessed a growing interest in the study of learning to rank as a means to leverage training information in a system. In this paper, we propose a new learning to rank method, i.e. BLM-Rank, which uses a linear function to score samples and models the pairwise preference of samples relying on their scores under a Bayesian framework. A stochastic gradient approach is adopted to maximize the posterior probability in BLM-Rank. For industrial practice, we have also implemented the proposed algorithm on Graphic Processing Unit (GPU). Experimental results on LETOR have demonstrated that the proposed BLM-Rank method outperforms the state-of-the-art methods, including RankSVM-Struct, RankBoost, AdaRank-NDCG, AdaRank-MAP and ListNet. Moreover, the results have shown that the GPU implementation of the BLM-Rank method is ten-to-eleven times faster than its CPU counterpart in the training phase, and one-to-four times faster in the testing phase.
doi_str_mv 10.1587/transinf.2015DAP0001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808114611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808114611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-b248663ef83675b0592ebafc45c5c1d29278fdb64d6d569167177aa57cb451293</originalsourceid><addsrcrecordid>eNpNkM9PwjAYhhujiYj-Bx569DLst63t5o1fIsmIhMi56boOhqPDthz47x0BkdObL3meN19ehJ6B9IAm_NVbaVxlyl5IgI76c0II3KAO8JgGEDG4RR2SAgsSGoX36MG5TQskIdAOWgyyWbCQ5vsN9_FAHrSrpMFZZbS0eKb9uilw2VictbepzAr7Bh9xLE2Bp97hyXyJp9tdrbfaeOmrxjyiu1LWTj-ds4uW7-Ov4UeQfU6mw34WKMqJD_IwThiLdJlEjNOc0DTUuSxVTBVVUIRpyJOyyFlcsIKy9n0OnEtJucpjCmEaddHLqXdnm5-9dl5sK6d0XUujm70TkJAEIGYALRqfUGUb56wuxc5WW2kPAog4Tij-JhRXE7ba_KRtnJcrfZGk9ZWq9b80TlMxEvE5ryouqFpLK7SJfgGAX4FS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808114611</pqid></control><display><type>article</type><title>BLM-Rank: A Bayesian Linear Method for Learning to Rank and Its GPU Implementation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>GUO, Huifeng ; CHU, Dianhui ; YE, Yunming ; LI, Xutao ; FAN, Xixian</creator><creatorcontrib>GUO, Huifeng ; CHU, Dianhui ; YE, Yunming ; LI, Xutao ; FAN, Xixian</creatorcontrib><description>Ranking as an important task in information systems has many applications, such as document/webpage retrieval, collaborative filtering and advertising. The last decade has witnessed a growing interest in the study of learning to rank as a means to leverage training information in a system. In this paper, we propose a new learning to rank method, i.e. BLM-Rank, which uses a linear function to score samples and models the pairwise preference of samples relying on their scores under a Bayesian framework. A stochastic gradient approach is adopted to maximize the posterior probability in BLM-Rank. For industrial practice, we have also implemented the proposed algorithm on Graphic Processing Unit (GPU). Experimental results on LETOR have demonstrated that the proposed BLM-Rank method outperforms the state-of-the-art methods, including RankSVM-Struct, RankBoost, AdaRank-NDCG, AdaRank-MAP and ListNet. Moreover, the results have shown that the GPU implementation of the BLM-Rank method is ten-to-eleven times faster than its CPU counterpart in the training phase, and one-to-four times faster in the testing phase.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2015DAP0001</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>Advertising ; Bayesian analysis ; Bayesian Personalized Ranking ; Filtering ; GPU ; Information systems ; Learning ; ranking ; State of the art ; stochastic gradient method ; Tasks ; Training</subject><ispartof>IEICE Transactions on Information and Systems, 2016/04/01, Vol.E99.D(4), pp.896-905</ispartof><rights>2016 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-b248663ef83675b0592ebafc45c5c1d29278fdb64d6d569167177aa57cb451293</citedby><cites>FETCH-LOGICAL-c570t-b248663ef83675b0592ebafc45c5c1d29278fdb64d6d569167177aa57cb451293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,1884,4025,27928,27929,27930</link.rule.ids></links><search><creatorcontrib>GUO, Huifeng</creatorcontrib><creatorcontrib>CHU, Dianhui</creatorcontrib><creatorcontrib>YE, Yunming</creatorcontrib><creatorcontrib>LI, Xutao</creatorcontrib><creatorcontrib>FAN, Xixian</creatorcontrib><title>BLM-Rank: A Bayesian Linear Method for Learning to Rank and Its GPU Implementation</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><description>Ranking as an important task in information systems has many applications, such as document/webpage retrieval, collaborative filtering and advertising. The last decade has witnessed a growing interest in the study of learning to rank as a means to leverage training information in a system. In this paper, we propose a new learning to rank method, i.e. BLM-Rank, which uses a linear function to score samples and models the pairwise preference of samples relying on their scores under a Bayesian framework. A stochastic gradient approach is adopted to maximize the posterior probability in BLM-Rank. For industrial practice, we have also implemented the proposed algorithm on Graphic Processing Unit (GPU). Experimental results on LETOR have demonstrated that the proposed BLM-Rank method outperforms the state-of-the-art methods, including RankSVM-Struct, RankBoost, AdaRank-NDCG, AdaRank-MAP and ListNet. Moreover, the results have shown that the GPU implementation of the BLM-Rank method is ten-to-eleven times faster than its CPU counterpart in the training phase, and one-to-four times faster in the testing phase.</description><subject>Advertising</subject><subject>Bayesian analysis</subject><subject>Bayesian Personalized Ranking</subject><subject>Filtering</subject><subject>GPU</subject><subject>Information systems</subject><subject>Learning</subject><subject>ranking</subject><subject>State of the art</subject><subject>stochastic gradient method</subject><subject>Tasks</subject><subject>Training</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNkM9PwjAYhhujiYj-Bx569DLst63t5o1fIsmIhMi56boOhqPDthz47x0BkdObL3meN19ehJ6B9IAm_NVbaVxlyl5IgI76c0II3KAO8JgGEDG4RR2SAgsSGoX36MG5TQskIdAOWgyyWbCQ5vsN9_FAHrSrpMFZZbS0eKb9uilw2VictbepzAr7Bh9xLE2Bp97hyXyJp9tdrbfaeOmrxjyiu1LWTj-ds4uW7-Ov4UeQfU6mw34WKMqJD_IwThiLdJlEjNOc0DTUuSxVTBVVUIRpyJOyyFlcsIKy9n0OnEtJucpjCmEaddHLqXdnm5-9dl5sK6d0XUujm70TkJAEIGYALRqfUGUb56wuxc5WW2kPAog4Tij-JhRXE7ba_KRtnJcrfZGk9ZWq9b80TlMxEvE5ryouqFpLK7SJfgGAX4FS</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>GUO, Huifeng</creator><creator>CHU, Dianhui</creator><creator>YE, Yunming</creator><creator>LI, Xutao</creator><creator>FAN, Xixian</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2016</creationdate><title>BLM-Rank: A Bayesian Linear Method for Learning to Rank and Its GPU Implementation</title><author>GUO, Huifeng ; CHU, Dianhui ; YE, Yunming ; LI, Xutao ; FAN, Xixian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-b248663ef83675b0592ebafc45c5c1d29278fdb64d6d569167177aa57cb451293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Advertising</topic><topic>Bayesian analysis</topic><topic>Bayesian Personalized Ranking</topic><topic>Filtering</topic><topic>GPU</topic><topic>Information systems</topic><topic>Learning</topic><topic>ranking</topic><topic>State of the art</topic><topic>stochastic gradient method</topic><topic>Tasks</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GUO, Huifeng</creatorcontrib><creatorcontrib>CHU, Dianhui</creatorcontrib><creatorcontrib>YE, Yunming</creatorcontrib><creatorcontrib>LI, Xutao</creatorcontrib><creatorcontrib>FAN, Xixian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GUO, Huifeng</au><au>CHU, Dianhui</au><au>YE, Yunming</au><au>LI, Xutao</au><au>FAN, Xixian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BLM-Rank: A Bayesian Linear Method for Learning to Rank and Its GPU Implementation</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><date>2016</date><risdate>2016</risdate><volume>E99.D</volume><issue>4</issue><spage>896</spage><epage>905</epage><pages>896-905</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Ranking as an important task in information systems has many applications, such as document/webpage retrieval, collaborative filtering and advertising. The last decade has witnessed a growing interest in the study of learning to rank as a means to leverage training information in a system. In this paper, we propose a new learning to rank method, i.e. BLM-Rank, which uses a linear function to score samples and models the pairwise preference of samples relying on their scores under a Bayesian framework. A stochastic gradient approach is adopted to maximize the posterior probability in BLM-Rank. For industrial practice, we have also implemented the proposed algorithm on Graphic Processing Unit (GPU). Experimental results on LETOR have demonstrated that the proposed BLM-Rank method outperforms the state-of-the-art methods, including RankSVM-Struct, RankBoost, AdaRank-NDCG, AdaRank-MAP and ListNet. Moreover, the results have shown that the GPU implementation of the BLM-Rank method is ten-to-eleven times faster than its CPU counterpart in the training phase, and one-to-four times faster in the testing phase.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2015DAP0001</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE Transactions on Information and Systems, 2016/04/01, Vol.E99.D(4), pp.896-905
issn 0916-8532
1745-1361
language eng
recordid cdi_proquest_miscellaneous_1808114611
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese
subjects Advertising
Bayesian analysis
Bayesian Personalized Ranking
Filtering
GPU
Information systems
Learning
ranking
State of the art
stochastic gradient method
Tasks
Training
title BLM-Rank: A Bayesian Linear Method for Learning to Rank and Its GPU Implementation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T18%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BLM-Rank:%20A%20Bayesian%20Linear%20Method%20for%20Learning%20to%20Rank%20and%20Its%20GPU%20Implementation&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=GUO,%20Huifeng&rft.date=2016&rft.volume=E99.D&rft.issue=4&rft.spage=896&rft.epage=905&rft.pages=896-905&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2015DAP0001&rft_dat=%3Cproquest_cross%3E1808114611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808114611&rft_id=info:pmid/&rfr_iscdi=true