Nonassociative Weyl star products

A bstract Deformation quantization is a formal deformation of the algebra of smooth functions on some manifold. In the classical setting, the Poisson bracket serves as an initial conditions, while the associativity allows to proceed to higher orders. Some applications to string theory require deform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2015-09, Vol.2015 (9), p.1-16, Article 103
Hauptverfasser: Kupriyanov, V.G., Vassilevich, D.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 9
container_start_page 1
container_title The journal of high energy physics
container_volume 2015
creator Kupriyanov, V.G.
Vassilevich, D.V.
description A bstract Deformation quantization is a formal deformation of the algebra of smooth functions on some manifold. In the classical setting, the Poisson bracket serves as an initial conditions, while the associativity allows to proceed to higher orders. Some applications to string theory require deformation in the direction of a quasi-Poisson bracket (that does not satisfy the Jacobi identity). This initial condition is incompatible with associativity, it is quite unclear which restrictions can be imposed on the deformation. We show that for any quasi-Poisson bracket the deformation quantization exists and is essentially unique if one requires (weak) hermiticity and the Weyl condition. We also propose an iterative procedure that allows one to compute the star product up to any desired order.
doi_str_mv 10.1007/JHEP09(2015)103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808113909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3811484401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-ce3c18f3456590fd54ca7af3ab246833633bd5ee59a2511d75bea479f42a87ae3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKtnrxUv9bB2ZidpNkcp1SpFPSgeQ5rNypbtbk12hf57U9ZDETzNMHzvzeMxdolwiwBy8rSYv4Iap4DiBoGO2AAhVUnGpTo-2E_ZWQhriBQqGLCr56Y2ITS2NG357UYfbleNQmv8aOubvLNtOGcnhamCu_idQ_Z-P3-bLZLly8Pj7G6ZWE7QJtaRxawgLqZCQZELbo00BZlVyqcZ0ZRolQvnhDKpQMylWDkT8xQ8NZk0joZs3PvGx1-dC63elMG6qjK1a7qgMYMMkRSoiF7_QddN5-uYTqNEkgRc8khNesr6JgTvCr315cb4nUbQ-8p0X5neVxYPFBXQK0Ik60_nD3z_kfwA2WprrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1713730474</pqid></control><display><type>article</type><title>Nonassociative Weyl star products</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Kupriyanov, V.G. ; Vassilevich, D.V.</creator><creatorcontrib>Kupriyanov, V.G. ; Vassilevich, D.V.</creatorcontrib><description>A bstract Deformation quantization is a formal deformation of the algebra of smooth functions on some manifold. In the classical setting, the Poisson bracket serves as an initial conditions, while the associativity allows to proceed to higher orders. Some applications to string theory require deformation in the direction of a quasi-Poisson bracket (that does not satisfy the Jacobi identity). This initial condition is incompatible with associativity, it is quite unclear which restrictions can be imposed on the deformation. We show that for any quasi-Poisson bracket the deformation quantization exists and is essentially unique if one requires (weak) hermiticity and the Weyl condition. We also propose an iterative procedure that allows one to compute the star product up to any desired order.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP09(2015)103</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Brackets ; Classical and Quantum Gravitation ; Deformation ; Elementary Particles ; High energy physics ; Initial conditions ; Manifolds ; Mathematical analysis ; Physics ; Physics and Astronomy ; Quantization ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Stars ; String Theory</subject><ispartof>The journal of high energy physics, 2015-09, Vol.2015 (9), p.1-16, Article 103</ispartof><rights>The Author(s) 2015</rights><rights>SISSA, Trieste, Italy 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-ce3c18f3456590fd54ca7af3ab246833633bd5ee59a2511d75bea479f42a87ae3</citedby><cites>FETCH-LOGICAL-c430t-ce3c18f3456590fd54ca7af3ab246833633bd5ee59a2511d75bea479f42a87ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP09(2015)103$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP09(2015)103$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,27929,27930,41125,42194,51581</link.rule.ids></links><search><creatorcontrib>Kupriyanov, V.G.</creatorcontrib><creatorcontrib>Vassilevich, D.V.</creatorcontrib><title>Nonassociative Weyl star products</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract Deformation quantization is a formal deformation of the algebra of smooth functions on some manifold. In the classical setting, the Poisson bracket serves as an initial conditions, while the associativity allows to proceed to higher orders. Some applications to string theory require deformation in the direction of a quasi-Poisson bracket (that does not satisfy the Jacobi identity). This initial condition is incompatible with associativity, it is quite unclear which restrictions can be imposed on the deformation. We show that for any quasi-Poisson bracket the deformation quantization exists and is essentially unique if one requires (weak) hermiticity and the Weyl condition. We also propose an iterative procedure that allows one to compute the star product up to any desired order.</description><subject>Algebra</subject><subject>Brackets</subject><subject>Classical and Quantum Gravitation</subject><subject>Deformation</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Initial conditions</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantization</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Stars</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLAzEQhYMoWKtnrxUv9bB2ZidpNkcp1SpFPSgeQ5rNypbtbk12hf57U9ZDETzNMHzvzeMxdolwiwBy8rSYv4Iap4DiBoGO2AAhVUnGpTo-2E_ZWQhriBQqGLCr56Y2ITS2NG357UYfbleNQmv8aOubvLNtOGcnhamCu_idQ_Z-P3-bLZLly8Pj7G6ZWE7QJtaRxawgLqZCQZELbo00BZlVyqcZ0ZRolQvnhDKpQMylWDkT8xQ8NZk0joZs3PvGx1-dC63elMG6qjK1a7qgMYMMkRSoiF7_QddN5-uYTqNEkgRc8khNesr6JgTvCr315cb4nUbQ-8p0X5neVxYPFBXQK0Ik60_nD3z_kfwA2WprrQ</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Kupriyanov, V.G.</creator><creator>Vassilevich, D.V.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150901</creationdate><title>Nonassociative Weyl star products</title><author>Kupriyanov, V.G. ; Vassilevich, D.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-ce3c18f3456590fd54ca7af3ab246833633bd5ee59a2511d75bea479f42a87ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Brackets</topic><topic>Classical and Quantum Gravitation</topic><topic>Deformation</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Initial conditions</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantization</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Stars</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kupriyanov, V.G.</creatorcontrib><creatorcontrib>Vassilevich, D.V.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kupriyanov, V.G.</au><au>Vassilevich, D.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonassociative Weyl star products</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>2015</volume><issue>9</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>103</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract Deformation quantization is a formal deformation of the algebra of smooth functions on some manifold. In the classical setting, the Poisson bracket serves as an initial conditions, while the associativity allows to proceed to higher orders. Some applications to string theory require deformation in the direction of a quasi-Poisson bracket (that does not satisfy the Jacobi identity). This initial condition is incompatible with associativity, it is quite unclear which restrictions can be imposed on the deformation. We show that for any quasi-Poisson bracket the deformation quantization exists and is essentially unique if one requires (weak) hermiticity and the Weyl condition. We also propose an iterative procedure that allows one to compute the star product up to any desired order.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP09(2015)103</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2015-09, Vol.2015 (9), p.1-16, Article 103
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_miscellaneous_1808113909
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Springer Nature OA/Free Journals
subjects Algebra
Brackets
Classical and Quantum Gravitation
Deformation
Elementary Particles
High energy physics
Initial conditions
Manifolds
Mathematical analysis
Physics
Physics and Astronomy
Quantization
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Stars
String Theory
title Nonassociative Weyl star products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T05%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonassociative%20Weyl%20star%20products&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Kupriyanov,%20V.G.&rft.date=2015-09-01&rft.volume=2015&rft.issue=9&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=103&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP09(2015)103&rft_dat=%3Cproquest_cross%3E3811484401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1713730474&rft_id=info:pmid/&rfr_iscdi=true