Perturbation theory model of reactivity and enantioselectivity of palladium-catalyzed Heck–Heck cascade reactions

Enantioselective intramolecular Heck–Heck cascade reactions have emerged as an excellent tool for the construction of polycyclic frameworks, such as lycorane alkaloids, xestoquinone and analogues. However, it is particularly difficult to rationalize the effect of simultaneous changes in both the str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2016-01, Vol.6 (45), p.38602-38610
Hauptverfasser: Blázquez-Barbadillo, C., Aranzamendi, E., Coya, E., Lete, E., Sotomayor, N., González-Díaz, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38610
container_issue 45
container_start_page 38602
container_title RSC advances
container_volume 6
creator Blázquez-Barbadillo, C.
Aranzamendi, E.
Coya, E.
Lete, E.
Sotomayor, N.
González-Díaz, H.
description Enantioselective intramolecular Heck–Heck cascade reactions have emerged as an excellent tool for the construction of polycyclic frameworks, such as lycorane alkaloids, xestoquinone and analogues. However, it is particularly difficult to rationalize the effect of simultaneous changes in both the structure of many molecular entities and experimental conditions (temperature, time, solvent, ligand, catalyst loading, etc. ) on reactivity and enantioselectivity. In this work, a computational model to predict the enantiomeric excess and the yield of Heck–Heck cascade reactions has been developed. The model combines Perturbation Theory (PT) and Quantitative Structure-Reactivity Relationships (QSRR) ideas for the prediction of two different outputs with the same equation (% ee and % yield). This model predicted 520 experimental outcomes with a correlation coefficient of R = 0.89, standard error of estimates of SEE = 1.19%, and a cross-validation correlation coefficient of q 2 = 0.79. The use of the model has been illustrated with a case study, the Heck–Heck cascade reaction of a 2,3-dialkenyl pyrrole using Pd(dba) 2 and ( R )-BINAP. For the first time, a 2000-points simulation in ternary phase diagrams shows the effect of the concentration of the catalyst, the base, and ligand on the enantioselectivity of this reaction. The QSRR model also predicts trends in structural outcomes, such as halides vs. triflates, or the ligand structure. Therefore, the model opens the door to the design of new chiral ligands and helps to find trends to improve the experimental results in enantioselective polyene cyclisations.
doi_str_mv 10.1039/C6RA08751E
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808112979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808112979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-bfd91a4ed23ca95deab03de5bd5c6d57d123c958df44f847056e428b91d25ca33</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOOZufIJcilBN2iZtLseYThgootflNDnFatvMJBXqle-wN_RJ7NhEz81_OOfj5-cn5JyzK84Sdb2Qj3OWZ4Ivj8gkZqmMYibV8b_9lMy8f2XjSMFjySfEP6ALvSsh1Laj4QWtG2hrDTbUVtQh6FB_1GGg0BmKHXQj57HB3_MIbaBpwNR9G2kI0AyfaOgK9dv313YnVIPXYPBgZjt_Rk4qaDzODjolzzfLp8UqWt_f3i3m60gnUoaorIzikKKJEw1KGISSJQZFaYSWRmSGjw8lclOlaZWnGRMS0zgvFTex0JAkU3Kx9904-96jD0Vbe41j2g5t7wues5zzWGVqRC_3qHbWe4dVsXF1C24oOCt25RZ_5SY_YxtwAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808112979</pqid></control><display><type>article</type><title>Perturbation theory model of reactivity and enantioselectivity of palladium-catalyzed Heck–Heck cascade reactions</title><source>Royal Society of Chemistry E-Journals</source><creator>Blázquez-Barbadillo, C. ; Aranzamendi, E. ; Coya, E. ; Lete, E. ; Sotomayor, N. ; González-Díaz, H.</creator><creatorcontrib>Blázquez-Barbadillo, C. ; Aranzamendi, E. ; Coya, E. ; Lete, E. ; Sotomayor, N. ; González-Díaz, H.</creatorcontrib><description>Enantioselective intramolecular Heck–Heck cascade reactions have emerged as an excellent tool for the construction of polycyclic frameworks, such as lycorane alkaloids, xestoquinone and analogues. However, it is particularly difficult to rationalize the effect of simultaneous changes in both the structure of many molecular entities and experimental conditions (temperature, time, solvent, ligand, catalyst loading, etc. ) on reactivity and enantioselectivity. In this work, a computational model to predict the enantiomeric excess and the yield of Heck–Heck cascade reactions has been developed. The model combines Perturbation Theory (PT) and Quantitative Structure-Reactivity Relationships (QSRR) ideas for the prediction of two different outputs with the same equation (% ee and % yield). This model predicted 520 experimental outcomes with a correlation coefficient of R = 0.89, standard error of estimates of SEE = 1.19%, and a cross-validation correlation coefficient of q 2 = 0.79. The use of the model has been illustrated with a case study, the Heck–Heck cascade reaction of a 2,3-dialkenyl pyrrole using Pd(dba) 2 and ( R )-BINAP. For the first time, a 2000-points simulation in ternary phase diagrams shows the effect of the concentration of the catalyst, the base, and ligand on the enantioselectivity of this reaction. The QSRR model also predicts trends in structural outcomes, such as halides vs. triflates, or the ligand structure. Therefore, the model opens the door to the design of new chiral ligands and helps to find trends to improve the experimental results in enantioselective polyene cyclisations.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/C6RA08751E</identifier><language>eng</language><subject>Cascade chemical reactions ; Catalysts ; Correlation coefficients ; Ligands ; Mathematical models ; Molecular structure ; Perturbation theory ; Trends</subject><ispartof>RSC advances, 2016-01, Vol.6 (45), p.38602-38610</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-bfd91a4ed23ca95deab03de5bd5c6d57d123c958df44f847056e428b91d25ca33</citedby><cites>FETCH-LOGICAL-c366t-bfd91a4ed23ca95deab03de5bd5c6d57d123c958df44f847056e428b91d25ca33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Blázquez-Barbadillo, C.</creatorcontrib><creatorcontrib>Aranzamendi, E.</creatorcontrib><creatorcontrib>Coya, E.</creatorcontrib><creatorcontrib>Lete, E.</creatorcontrib><creatorcontrib>Sotomayor, N.</creatorcontrib><creatorcontrib>González-Díaz, H.</creatorcontrib><title>Perturbation theory model of reactivity and enantioselectivity of palladium-catalyzed Heck–Heck cascade reactions</title><title>RSC advances</title><description>Enantioselective intramolecular Heck–Heck cascade reactions have emerged as an excellent tool for the construction of polycyclic frameworks, such as lycorane alkaloids, xestoquinone and analogues. However, it is particularly difficult to rationalize the effect of simultaneous changes in both the structure of many molecular entities and experimental conditions (temperature, time, solvent, ligand, catalyst loading, etc. ) on reactivity and enantioselectivity. In this work, a computational model to predict the enantiomeric excess and the yield of Heck–Heck cascade reactions has been developed. The model combines Perturbation Theory (PT) and Quantitative Structure-Reactivity Relationships (QSRR) ideas for the prediction of two different outputs with the same equation (% ee and % yield). This model predicted 520 experimental outcomes with a correlation coefficient of R = 0.89, standard error of estimates of SEE = 1.19%, and a cross-validation correlation coefficient of q 2 = 0.79. The use of the model has been illustrated with a case study, the Heck–Heck cascade reaction of a 2,3-dialkenyl pyrrole using Pd(dba) 2 and ( R )-BINAP. For the first time, a 2000-points simulation in ternary phase diagrams shows the effect of the concentration of the catalyst, the base, and ligand on the enantioselectivity of this reaction. The QSRR model also predicts trends in structural outcomes, such as halides vs. triflates, or the ligand structure. Therefore, the model opens the door to the design of new chiral ligands and helps to find trends to improve the experimental results in enantioselective polyene cyclisations.</description><subject>Cascade chemical reactions</subject><subject>Catalysts</subject><subject>Correlation coefficients</subject><subject>Ligands</subject><subject>Mathematical models</subject><subject>Molecular structure</subject><subject>Perturbation theory</subject><subject>Trends</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNkNFKwzAUhoMoOOZufIJcilBN2iZtLseYThgootflNDnFatvMJBXqle-wN_RJ7NhEz81_OOfj5-cn5JyzK84Sdb2Qj3OWZ4Ivj8gkZqmMYibV8b_9lMy8f2XjSMFjySfEP6ALvSsh1Laj4QWtG2hrDTbUVtQh6FB_1GGg0BmKHXQj57HB3_MIbaBpwNR9G2kI0AyfaOgK9dv313YnVIPXYPBgZjt_Rk4qaDzODjolzzfLp8UqWt_f3i3m60gnUoaorIzikKKJEw1KGISSJQZFaYSWRmSGjw8lclOlaZWnGRMS0zgvFTex0JAkU3Kx9904-96jD0Vbe41j2g5t7wues5zzWGVqRC_3qHbWe4dVsXF1C24oOCt25RZ_5SY_YxtwAQ</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Blázquez-Barbadillo, C.</creator><creator>Aranzamendi, E.</creator><creator>Coya, E.</creator><creator>Lete, E.</creator><creator>Sotomayor, N.</creator><creator>González-Díaz, H.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20160101</creationdate><title>Perturbation theory model of reactivity and enantioselectivity of palladium-catalyzed Heck–Heck cascade reactions</title><author>Blázquez-Barbadillo, C. ; Aranzamendi, E. ; Coya, E. ; Lete, E. ; Sotomayor, N. ; González-Díaz, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-bfd91a4ed23ca95deab03de5bd5c6d57d123c958df44f847056e428b91d25ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cascade chemical reactions</topic><topic>Catalysts</topic><topic>Correlation coefficients</topic><topic>Ligands</topic><topic>Mathematical models</topic><topic>Molecular structure</topic><topic>Perturbation theory</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blázquez-Barbadillo, C.</creatorcontrib><creatorcontrib>Aranzamendi, E.</creatorcontrib><creatorcontrib>Coya, E.</creatorcontrib><creatorcontrib>Lete, E.</creatorcontrib><creatorcontrib>Sotomayor, N.</creatorcontrib><creatorcontrib>González-Díaz, H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blázquez-Barbadillo, C.</au><au>Aranzamendi, E.</au><au>Coya, E.</au><au>Lete, E.</au><au>Sotomayor, N.</au><au>González-Díaz, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perturbation theory model of reactivity and enantioselectivity of palladium-catalyzed Heck–Heck cascade reactions</atitle><jtitle>RSC advances</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>6</volume><issue>45</issue><spage>38602</spage><epage>38610</epage><pages>38602-38610</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Enantioselective intramolecular Heck–Heck cascade reactions have emerged as an excellent tool for the construction of polycyclic frameworks, such as lycorane alkaloids, xestoquinone and analogues. However, it is particularly difficult to rationalize the effect of simultaneous changes in both the structure of many molecular entities and experimental conditions (temperature, time, solvent, ligand, catalyst loading, etc. ) on reactivity and enantioselectivity. In this work, a computational model to predict the enantiomeric excess and the yield of Heck–Heck cascade reactions has been developed. The model combines Perturbation Theory (PT) and Quantitative Structure-Reactivity Relationships (QSRR) ideas for the prediction of two different outputs with the same equation (% ee and % yield). This model predicted 520 experimental outcomes with a correlation coefficient of R = 0.89, standard error of estimates of SEE = 1.19%, and a cross-validation correlation coefficient of q 2 = 0.79. The use of the model has been illustrated with a case study, the Heck–Heck cascade reaction of a 2,3-dialkenyl pyrrole using Pd(dba) 2 and ( R )-BINAP. For the first time, a 2000-points simulation in ternary phase diagrams shows the effect of the concentration of the catalyst, the base, and ligand on the enantioselectivity of this reaction. The QSRR model also predicts trends in structural outcomes, such as halides vs. triflates, or the ligand structure. Therefore, the model opens the door to the design of new chiral ligands and helps to find trends to improve the experimental results in enantioselective polyene cyclisations.</abstract><doi>10.1039/C6RA08751E</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2016-01, Vol.6 (45), p.38602-38610
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_miscellaneous_1808112979
source Royal Society of Chemistry E-Journals
subjects Cascade chemical reactions
Catalysts
Correlation coefficients
Ligands
Mathematical models
Molecular structure
Perturbation theory
Trends
title Perturbation theory model of reactivity and enantioselectivity of palladium-catalyzed Heck–Heck cascade reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perturbation%20theory%20model%20of%20reactivity%20and%20enantioselectivity%20of%20palladium-catalyzed%20Heck%E2%80%93Heck%20cascade%20reactions&rft.jtitle=RSC%20advances&rft.au=Bl%C3%A1zquez-Barbadillo,%20C.&rft.date=2016-01-01&rft.volume=6&rft.issue=45&rft.spage=38602&rft.epage=38610&rft.pages=38602-38610&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/C6RA08751E&rft_dat=%3Cproquest_cross%3E1808112979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808112979&rft_id=info:pmid/&rfr_iscdi=true