Online Weight Balancing on the Unit Circle
We consider a problem as follows: Given unit weights arriving in an online manner with the total cardinality unknown, upon each arrival we decide where to place it on the unit circle in $\mathbb{R}^{2}$. The objective is to set the center of mass of the placed weights as close to the origin as possi...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2016/03/01, Vol.E99.D(3), pp.567-574 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 574 |
---|---|
container_issue | 3 |
container_start_page | 567 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E99.D |
creator | FUJIWARA, Hiroshi SEKI, Takahiro FUJITO, Toshihiro |
description | We consider a problem as follows: Given unit weights arriving in an online manner with the total cardinality unknown, upon each arrival we decide where to place it on the unit circle in $\mathbb{R}^{2}$. The objective is to set the center of mass of the placed weights as close to the origin as possible. We apply competitive analysis defining the competitive difference as a performance measure. We first present an optimal strategy for placing unit weights which achieves a competitive difference of $\frac{1}{5}$. We next consider a variant in which the destination of each weight must be chosen from a set of positions that equally divide the unit circle. We give a simple strategy whose competitive difference is 0.35. Moreover, in the offline setting, several conditions for the center of mass to lie at the origin are derived. |
doi_str_mv | 10.1587/transinf.2015FCP0006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808112174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808112174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-a2ace5538d9683820ac03b788ef9d1292a4e2f546a25f7e107851312574af96d3</originalsourceid><addsrcrecordid>eNpNkDFPwzAUhC0EEqXwDxgyIqQUPztOnBFCC0iV2oGK0TLuS-sqdYrtDvx7glJKp1vuO90dIbdARyBk8RC9dsG6esQoiEk1p5TmZ2QARSZS4DmckwEtIU-l4OySXIWwoRQkAzEg9zPXWIfJB9rVOiZPutHOWLdKWpfENSYLZ2NSWW8avCYXtW4C3hx0SBaT8Xv1mk5nL2_V4zQ1Iucx1UwbFILLZZlLLhnVhvLPQkqsyyWwkukMWS2yXDNRFwi0kAI4MFFkui7zJR-Suz5359uvPYaotjYYbLpm2O6DAkklAOvWddastxrfhuCxVjtvt9p_K6Dq9xr1d406uabD5j22CVGv8AhpH2039B8al6V6VvygJxFHq1lrr9DxH-kxc7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808112174</pqid></control><display><type>article</type><title>Online Weight Balancing on the Unit Circle</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>FUJIWARA, Hiroshi ; SEKI, Takahiro ; FUJITO, Toshihiro</creator><creatorcontrib>FUJIWARA, Hiroshi ; SEKI, Takahiro ; FUJITO, Toshihiro</creatorcontrib><description>We consider a problem as follows: Given unit weights arriving in an online manner with the total cardinality unknown, upon each arrival we decide where to place it on the unit circle in $\mathbb{R}^{2}$. The objective is to set the center of mass of the placed weights as close to the origin as possible. We apply competitive analysis defining the competitive difference as a performance measure. We first present an optimal strategy for placing unit weights which achieves a competitive difference of $\frac{1}{5}$. We next consider a variant in which the destination of each weight must be chosen from a set of positions that equally divide the unit circle. We give a simple strategy whose competitive difference is 0.35. Moreover, in the offline setting, several conditions for the center of mass to lie at the origin are derived.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2015FCP0006</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>Arrivals ; Business competition ; Center of mass ; competitive analysis ; computational geometry ; Online ; online algorithm ; online optimization ; Optimization ; Origins ; Placing ; Strategy</subject><ispartof>IEICE Transactions on Information and Systems, 2016/03/01, Vol.E99.D(3), pp.567-574</ispartof><rights>2016 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c563t-a2ace5538d9683820ac03b788ef9d1292a4e2f546a25f7e107851312574af96d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,27923,27924</link.rule.ids></links><search><creatorcontrib>FUJIWARA, Hiroshi</creatorcontrib><creatorcontrib>SEKI, Takahiro</creatorcontrib><creatorcontrib>FUJITO, Toshihiro</creatorcontrib><title>Online Weight Balancing on the Unit Circle</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>We consider a problem as follows: Given unit weights arriving in an online manner with the total cardinality unknown, upon each arrival we decide where to place it on the unit circle in $\mathbb{R}^{2}$. The objective is to set the center of mass of the placed weights as close to the origin as possible. We apply competitive analysis defining the competitive difference as a performance measure. We first present an optimal strategy for placing unit weights which achieves a competitive difference of $\frac{1}{5}$. We next consider a variant in which the destination of each weight must be chosen from a set of positions that equally divide the unit circle. We give a simple strategy whose competitive difference is 0.35. Moreover, in the offline setting, several conditions for the center of mass to lie at the origin are derived.</description><subject>Arrivals</subject><subject>Business competition</subject><subject>Center of mass</subject><subject>competitive analysis</subject><subject>computational geometry</subject><subject>Online</subject><subject>online algorithm</subject><subject>online optimization</subject><subject>Optimization</subject><subject>Origins</subject><subject>Placing</subject><subject>Strategy</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNkDFPwzAUhC0EEqXwDxgyIqQUPztOnBFCC0iV2oGK0TLuS-sqdYrtDvx7glJKp1vuO90dIbdARyBk8RC9dsG6esQoiEk1p5TmZ2QARSZS4DmckwEtIU-l4OySXIWwoRQkAzEg9zPXWIfJB9rVOiZPutHOWLdKWpfENSYLZ2NSWW8avCYXtW4C3hx0SBaT8Xv1mk5nL2_V4zQ1Iucx1UwbFILLZZlLLhnVhvLPQkqsyyWwkukMWS2yXDNRFwi0kAI4MFFkui7zJR-Suz5359uvPYaotjYYbLpm2O6DAkklAOvWddastxrfhuCxVjtvt9p_K6Dq9xr1d406uabD5j22CVGv8AhpH2039B8al6V6VvygJxFHq1lrr9DxH-kxc7Y</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>FUJIWARA, Hiroshi</creator><creator>SEKI, Takahiro</creator><creator>FUJITO, Toshihiro</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160101</creationdate><title>Online Weight Balancing on the Unit Circle</title><author>FUJIWARA, Hiroshi ; SEKI, Takahiro ; FUJITO, Toshihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-a2ace5538d9683820ac03b788ef9d1292a4e2f546a25f7e107851312574af96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arrivals</topic><topic>Business competition</topic><topic>Center of mass</topic><topic>competitive analysis</topic><topic>computational geometry</topic><topic>Online</topic><topic>online algorithm</topic><topic>online optimization</topic><topic>Optimization</topic><topic>Origins</topic><topic>Placing</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FUJIWARA, Hiroshi</creatorcontrib><creatorcontrib>SEKI, Takahiro</creatorcontrib><creatorcontrib>FUJITO, Toshihiro</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FUJIWARA, Hiroshi</au><au>SEKI, Takahiro</au><au>FUJITO, Toshihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Weight Balancing on the Unit Circle</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>E99.D</volume><issue>3</issue><spage>567</spage><epage>574</epage><pages>567-574</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>We consider a problem as follows: Given unit weights arriving in an online manner with the total cardinality unknown, upon each arrival we decide where to place it on the unit circle in $\mathbb{R}^{2}$. The objective is to set the center of mass of the placed weights as close to the origin as possible. We apply competitive analysis defining the competitive difference as a performance measure. We first present an optimal strategy for placing unit weights which achieves a competitive difference of $\frac{1}{5}$. We next consider a variant in which the destination of each weight must be chosen from a set of positions that equally divide the unit circle. We give a simple strategy whose competitive difference is 0.35. Moreover, in the offline setting, several conditions for the center of mass to lie at the origin are derived.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2015FCP0006</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2016/03/01, Vol.E99.D(3), pp.567-574 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808112174 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | Arrivals Business competition Center of mass competitive analysis computational geometry Online online algorithm online optimization Optimization Origins Placing Strategy |
title | Online Weight Balancing on the Unit Circle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Weight%20Balancing%20on%20the%20Unit%20Circle&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=FUJIWARA,%20Hiroshi&rft.date=2016-01-01&rft.volume=E99.D&rft.issue=3&rft.spage=567&rft.epage=574&rft.pages=567-574&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2015FCP0006&rft_dat=%3Cproquest_cross%3E1808112174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808112174&rft_id=info:pmid/&rfr_iscdi=true |