Online Weight Balancing on the Unit Circle

We consider a problem as follows: Given unit weights arriving in an online manner with the total cardinality unknown, upon each arrival we decide where to place it on the unit circle in $\mathbb{R}^{2}$. The objective is to set the center of mass of the placed weights as close to the origin as possi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2016/03/01, Vol.E99.D(3), pp.567-574
Hauptverfasser: FUJIWARA, Hiroshi, SEKI, Takahiro, FUJITO, Toshihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 574
container_issue 3
container_start_page 567
container_title IEICE Transactions on Information and Systems
container_volume E99.D
creator FUJIWARA, Hiroshi
SEKI, Takahiro
FUJITO, Toshihiro
description We consider a problem as follows: Given unit weights arriving in an online manner with the total cardinality unknown, upon each arrival we decide where to place it on the unit circle in $\mathbb{R}^{2}$. The objective is to set the center of mass of the placed weights as close to the origin as possible. We apply competitive analysis defining the competitive difference as a performance measure. We first present an optimal strategy for placing unit weights which achieves a competitive difference of $\frac{1}{5}$. We next consider a variant in which the destination of each weight must be chosen from a set of positions that equally divide the unit circle. We give a simple strategy whose competitive difference is 0.35. Moreover, in the offline setting, several conditions for the center of mass to lie at the origin are derived.
doi_str_mv 10.1587/transinf.2015FCP0006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808112174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808112174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-a2ace5538d9683820ac03b788ef9d1292a4e2f546a25f7e107851312574af96d3</originalsourceid><addsrcrecordid>eNpNkDFPwzAUhC0EEqXwDxgyIqQUPztOnBFCC0iV2oGK0TLuS-sqdYrtDvx7glJKp1vuO90dIbdARyBk8RC9dsG6esQoiEk1p5TmZ2QARSZS4DmckwEtIU-l4OySXIWwoRQkAzEg9zPXWIfJB9rVOiZPutHOWLdKWpfENSYLZ2NSWW8avCYXtW4C3hx0SBaT8Xv1mk5nL2_V4zQ1Iucx1UwbFILLZZlLLhnVhvLPQkqsyyWwkukMWS2yXDNRFwi0kAI4MFFkui7zJR-Suz5359uvPYaotjYYbLpm2O6DAkklAOvWddastxrfhuCxVjtvt9p_K6Dq9xr1d406uabD5j22CVGv8AhpH2039B8al6V6VvygJxFHq1lrr9DxH-kxc7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808112174</pqid></control><display><type>article</type><title>Online Weight Balancing on the Unit Circle</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>FUJIWARA, Hiroshi ; SEKI, Takahiro ; FUJITO, Toshihiro</creator><creatorcontrib>FUJIWARA, Hiroshi ; SEKI, Takahiro ; FUJITO, Toshihiro</creatorcontrib><description>We consider a problem as follows: Given unit weights arriving in an online manner with the total cardinality unknown, upon each arrival we decide where to place it on the unit circle in $\mathbb{R}^{2}$. The objective is to set the center of mass of the placed weights as close to the origin as possible. We apply competitive analysis defining the competitive difference as a performance measure. We first present an optimal strategy for placing unit weights which achieves a competitive difference of $\frac{1}{5}$. We next consider a variant in which the destination of each weight must be chosen from a set of positions that equally divide the unit circle. We give a simple strategy whose competitive difference is 0.35. Moreover, in the offline setting, several conditions for the center of mass to lie at the origin are derived.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2015FCP0006</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>Arrivals ; Business competition ; Center of mass ; competitive analysis ; computational geometry ; Online ; online algorithm ; online optimization ; Optimization ; Origins ; Placing ; Strategy</subject><ispartof>IEICE Transactions on Information and Systems, 2016/03/01, Vol.E99.D(3), pp.567-574</ispartof><rights>2016 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c563t-a2ace5538d9683820ac03b788ef9d1292a4e2f546a25f7e107851312574af96d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,27923,27924</link.rule.ids></links><search><creatorcontrib>FUJIWARA, Hiroshi</creatorcontrib><creatorcontrib>SEKI, Takahiro</creatorcontrib><creatorcontrib>FUJITO, Toshihiro</creatorcontrib><title>Online Weight Balancing on the Unit Circle</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><description>We consider a problem as follows: Given unit weights arriving in an online manner with the total cardinality unknown, upon each arrival we decide where to place it on the unit circle in $\mathbb{R}^{2}$. The objective is to set the center of mass of the placed weights as close to the origin as possible. We apply competitive analysis defining the competitive difference as a performance measure. We first present an optimal strategy for placing unit weights which achieves a competitive difference of $\frac{1}{5}$. We next consider a variant in which the destination of each weight must be chosen from a set of positions that equally divide the unit circle. We give a simple strategy whose competitive difference is 0.35. Moreover, in the offline setting, several conditions for the center of mass to lie at the origin are derived.</description><subject>Arrivals</subject><subject>Business competition</subject><subject>Center of mass</subject><subject>competitive analysis</subject><subject>computational geometry</subject><subject>Online</subject><subject>online algorithm</subject><subject>online optimization</subject><subject>Optimization</subject><subject>Origins</subject><subject>Placing</subject><subject>Strategy</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNkDFPwzAUhC0EEqXwDxgyIqQUPztOnBFCC0iV2oGK0TLuS-sqdYrtDvx7glJKp1vuO90dIbdARyBk8RC9dsG6esQoiEk1p5TmZ2QARSZS4DmckwEtIU-l4OySXIWwoRQkAzEg9zPXWIfJB9rVOiZPutHOWLdKWpfENSYLZ2NSWW8avCYXtW4C3hx0SBaT8Xv1mk5nL2_V4zQ1Iucx1UwbFILLZZlLLhnVhvLPQkqsyyWwkukMWS2yXDNRFwi0kAI4MFFkui7zJR-Suz5359uvPYaotjYYbLpm2O6DAkklAOvWddastxrfhuCxVjtvt9p_K6Dq9xr1d406uabD5j22CVGv8AhpH2039B8al6V6VvygJxFHq1lrr9DxH-kxc7Y</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>FUJIWARA, Hiroshi</creator><creator>SEKI, Takahiro</creator><creator>FUJITO, Toshihiro</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160101</creationdate><title>Online Weight Balancing on the Unit Circle</title><author>FUJIWARA, Hiroshi ; SEKI, Takahiro ; FUJITO, Toshihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-a2ace5538d9683820ac03b788ef9d1292a4e2f546a25f7e107851312574af96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arrivals</topic><topic>Business competition</topic><topic>Center of mass</topic><topic>competitive analysis</topic><topic>computational geometry</topic><topic>Online</topic><topic>online algorithm</topic><topic>online optimization</topic><topic>Optimization</topic><topic>Origins</topic><topic>Placing</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FUJIWARA, Hiroshi</creatorcontrib><creatorcontrib>SEKI, Takahiro</creatorcontrib><creatorcontrib>FUJITO, Toshihiro</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FUJIWARA, Hiroshi</au><au>SEKI, Takahiro</au><au>FUJITO, Toshihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Weight Balancing on the Unit Circle</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>E99.D</volume><issue>3</issue><spage>567</spage><epage>574</epage><pages>567-574</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>We consider a problem as follows: Given unit weights arriving in an online manner with the total cardinality unknown, upon each arrival we decide where to place it on the unit circle in $\mathbb{R}^{2}$. The objective is to set the center of mass of the placed weights as close to the origin as possible. We apply competitive analysis defining the competitive difference as a performance measure. We first present an optimal strategy for placing unit weights which achieves a competitive difference of $\frac{1}{5}$. We next consider a variant in which the destination of each weight must be chosen from a set of positions that equally divide the unit circle. We give a simple strategy whose competitive difference is 0.35. Moreover, in the offline setting, several conditions for the center of mass to lie at the origin are derived.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2015FCP0006</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE Transactions on Information and Systems, 2016/03/01, Vol.E99.D(3), pp.567-574
issn 0916-8532
1745-1361
language eng
recordid cdi_proquest_miscellaneous_1808112174
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects Arrivals
Business competition
Center of mass
competitive analysis
computational geometry
Online
online algorithm
online optimization
Optimization
Origins
Placing
Strategy
title Online Weight Balancing on the Unit Circle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Weight%20Balancing%20on%20the%20Unit%20Circle&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=FUJIWARA,%20Hiroshi&rft.date=2016-01-01&rft.volume=E99.D&rft.issue=3&rft.spage=567&rft.epage=574&rft.pages=567-574&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2015FCP0006&rft_dat=%3Cproquest_cross%3E1808112174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808112174&rft_id=info:pmid/&rfr_iscdi=true