Embedding operators of Sobolev spaces with variable exponents and applications

We introduce the vector-valued Sobolev spaces W m , p ( x ) (Ω; E 0 , E ) with variable exponent associated with two Banach spaces E 0 and E . The most regular space E α is found such that the differential operator D α is bounded and compact from W m , p ( x ) (Ω; E 0 , E ) to L q ( x ) (Ω; E α ), w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis mathematica (Budapest) 2015-12, Vol.41 (4), p.273-297
1. Verfasser: Shakhmurov, Veli B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 297
container_issue 4
container_start_page 273
container_title Analysis mathematica (Budapest)
container_volume 41
creator Shakhmurov, Veli B.
description We introduce the vector-valued Sobolev spaces W m , p ( x ) (Ω; E 0 , E ) with variable exponent associated with two Banach spaces E 0 and E . The most regular space E α is found such that the differential operator D α is bounded and compact from W m , p ( x ) (Ω; E 0 , E ) to L q ( x ) (Ω; E α ), where E α are interpolation spaces between E 0 and E is depending on α = ( α 1 , α 2 ,..., α n ) and the positive integer m , where Ω ⊂ ℝ n is a region such that there exists a bounded linear extension operator from W m , p ( x ) (Ω; E 0 , E ) to W m , p ( x ) (ℝ n ; E ( A ), E ). The function p ( x ) is Lipschitz continuous on Ω and q ( x ) is a measurable function such that for a.e. . Ehrling–Nirenberg–Gagilardo type sharp estimates for mixed derivatives are obtained. Then, by using this embedding result, the separability properties of abstract differential equations are established.
doi_str_mv 10.1007/s10476-015-0303-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808111212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808111212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-80c13d64500d02cae347e34a3ccc45377ac96e6327b850e1a7be13aec310e1a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9g8sgTu7CR2R1SVD6mCgQ5sluNcS6rUDnZa4N-TKswMp1cnPe9J9zB2jXCLAOouIeSqzACLDCTITJywCRZaZ0LJ91M2AZQyk7oQ5-wipS0AzEotJ-xlsauorhu_4aGjaPsQEw9r_haq0NKBp846Svyr6T_4wcbGVi1x-u6CJ98nbn3Nbde1jbN9E3y6ZGdr2ya6-sspWz0sVvOnbPn6-Dy_X2ZOCuwzDQ5lXeYFQA3CWZK5GsZK51xeSKWsm5VUSqEqXQChVRWhtOQkHjc5ZTfj2S6Gzz2l3uya5KhtraewTwY1aEQUKAYUR9TFkFKktelis7PxxyCYozozqjODOnNUZ44dMXbSwPoNRbMN--iHh_4p_QJ4-nG_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808111212</pqid></control><display><type>article</type><title>Embedding operators of Sobolev spaces with variable exponents and applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shakhmurov, Veli B.</creator><creatorcontrib>Shakhmurov, Veli B.</creatorcontrib><description>We introduce the vector-valued Sobolev spaces W m , p ( x ) (Ω; E 0 , E ) with variable exponent associated with two Banach spaces E 0 and E . The most regular space E α is found such that the differential operator D α is bounded and compact from W m , p ( x ) (Ω; E 0 , E ) to L q ( x ) (Ω; E α ), where E α are interpolation spaces between E 0 and E is depending on α = ( α 1 , α 2 ,..., α n ) and the positive integer m , where Ω ⊂ ℝ n is a region such that there exists a bounded linear extension operator from W m , p ( x ) (Ω; E 0 , E ) to W m , p ( x ) (ℝ n ; E ( A ), E ). The function p ( x ) is Lipschitz continuous on Ω and q ( x ) is a measurable function such that for a.e. . Ehrling–Nirenberg–Gagilardo type sharp estimates for mixed derivatives are obtained. Then, by using this embedding result, the separability properties of abstract differential equations are established.</description><identifier>ISSN: 0133-3852</identifier><identifier>EISSN: 1588-273X</identifier><identifier>DOI: 10.1007/s10476-015-0303-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Banach space ; Derivatives ; Estimates ; Exponents ; Integers ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operators ; Sobolev space</subject><ispartof>Analysis mathematica (Budapest), 2015-12, Vol.41 (4), p.273-297</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-80c13d64500d02cae347e34a3ccc45377ac96e6327b850e1a7be13aec310e1a3</citedby><cites>FETCH-LOGICAL-c321t-80c13d64500d02cae347e34a3ccc45377ac96e6327b850e1a7be13aec310e1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10476-015-0303-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10476-015-0303-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shakhmurov, Veli B.</creatorcontrib><title>Embedding operators of Sobolev spaces with variable exponents and applications</title><title>Analysis mathematica (Budapest)</title><addtitle>Anal Math</addtitle><description>We introduce the vector-valued Sobolev spaces W m , p ( x ) (Ω; E 0 , E ) with variable exponent associated with two Banach spaces E 0 and E . The most regular space E α is found such that the differential operator D α is bounded and compact from W m , p ( x ) (Ω; E 0 , E ) to L q ( x ) (Ω; E α ), where E α are interpolation spaces between E 0 and E is depending on α = ( α 1 , α 2 ,..., α n ) and the positive integer m , where Ω ⊂ ℝ n is a region such that there exists a bounded linear extension operator from W m , p ( x ) (Ω; E 0 , E ) to W m , p ( x ) (ℝ n ; E ( A ), E ). The function p ( x ) is Lipschitz continuous on Ω and q ( x ) is a measurable function such that for a.e. . Ehrling–Nirenberg–Gagilardo type sharp estimates for mixed derivatives are obtained. Then, by using this embedding result, the separability properties of abstract differential equations are established.</description><subject>Analysis</subject><subject>Banach space</subject><subject>Derivatives</subject><subject>Estimates</subject><subject>Exponents</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><subject>Sobolev space</subject><issn>0133-3852</issn><issn>1588-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9g8sgTu7CR2R1SVD6mCgQ5sluNcS6rUDnZa4N-TKswMp1cnPe9J9zB2jXCLAOouIeSqzACLDCTITJywCRZaZ0LJ91M2AZQyk7oQ5-wipS0AzEotJ-xlsauorhu_4aGjaPsQEw9r_haq0NKBp846Svyr6T_4wcbGVi1x-u6CJ98nbn3Nbde1jbN9E3y6ZGdr2ya6-sspWz0sVvOnbPn6-Dy_X2ZOCuwzDQ5lXeYFQA3CWZK5GsZK51xeSKWsm5VUSqEqXQChVRWhtOQkHjc5ZTfj2S6Gzz2l3uya5KhtraewTwY1aEQUKAYUR9TFkFKktelis7PxxyCYozozqjODOnNUZ44dMXbSwPoNRbMN--iHh_4p_QJ4-nG_</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Shakhmurov, Veli B.</creator><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151201</creationdate><title>Embedding operators of Sobolev spaces with variable exponents and applications</title><author>Shakhmurov, Veli B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-80c13d64500d02cae347e34a3ccc45377ac96e6327b850e1a7be13aec310e1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Banach space</topic><topic>Derivatives</topic><topic>Estimates</topic><topic>Exponents</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shakhmurov, Veli B.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Analysis mathematica (Budapest)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shakhmurov, Veli B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedding operators of Sobolev spaces with variable exponents and applications</atitle><jtitle>Analysis mathematica (Budapest)</jtitle><stitle>Anal Math</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>41</volume><issue>4</issue><spage>273</spage><epage>297</epage><pages>273-297</pages><issn>0133-3852</issn><eissn>1588-273X</eissn><abstract>We introduce the vector-valued Sobolev spaces W m , p ( x ) (Ω; E 0 , E ) with variable exponent associated with two Banach spaces E 0 and E . The most regular space E α is found such that the differential operator D α is bounded and compact from W m , p ( x ) (Ω; E 0 , E ) to L q ( x ) (Ω; E α ), where E α are interpolation spaces between E 0 and E is depending on α = ( α 1 , α 2 ,..., α n ) and the positive integer m , where Ω ⊂ ℝ n is a region such that there exists a bounded linear extension operator from W m , p ( x ) (Ω; E 0 , E ) to W m , p ( x ) (ℝ n ; E ( A ), E ). The function p ( x ) is Lipschitz continuous on Ω and q ( x ) is a measurable function such that for a.e. . Ehrling–Nirenberg–Gagilardo type sharp estimates for mixed derivatives are obtained. Then, by using this embedding result, the separability properties of abstract differential equations are established.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10476-015-0303-2</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0133-3852
ispartof Analysis mathematica (Budapest), 2015-12, Vol.41 (4), p.273-297
issn 0133-3852
1588-273X
language eng
recordid cdi_proquest_miscellaneous_1808111212
source SpringerLink Journals - AutoHoldings
subjects Analysis
Banach space
Derivatives
Estimates
Exponents
Integers
Mathematical analysis
Mathematics
Mathematics and Statistics
Operators
Sobolev space
title Embedding operators of Sobolev spaces with variable exponents and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedding%20operators%20of%20Sobolev%20spaces%20with%20variable%20exponents%20and%20applications&rft.jtitle=Analysis%20mathematica%20(Budapest)&rft.au=Shakhmurov,%20Veli%20B.&rft.date=2015-12-01&rft.volume=41&rft.issue=4&rft.spage=273&rft.epage=297&rft.pages=273-297&rft.issn=0133-3852&rft.eissn=1588-273X&rft_id=info:doi/10.1007/s10476-015-0303-2&rft_dat=%3Cproquest_cross%3E1808111212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808111212&rft_id=info:pmid/&rfr_iscdi=true