Learning a Similarity Constrained Discriminative Kernel Dictionary from Concatenated Low-Rank Features for Action Recognition
Traditional low-rank feature lose the temporal information among action sequence. To obtain the temporal information, we split an action video into multiple action subsequences and concatenate all the low-rank features of subsequences according to their time order. Then we recognize actions by learn...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2016/02/01, Vol.E99.D(2), pp.541-544 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 544 |
---|---|
container_issue | 2 |
container_start_page | 541 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E99.D |
creator | HUANG, Shijian YE, Junyong WANG, Tongqing JIANG, Li XING, Changyuan LI, Yang |
description | Traditional low-rank feature lose the temporal information among action sequence. To obtain the temporal information, we split an action video into multiple action subsequences and concatenate all the low-rank features of subsequences according to their time order. Then we recognize actions by learning a novel dictionary model from concatenated low-rank features. However, traditional dictionary learning models usually neglect the similarity among the coding coefficients and have bad performance in dealing with non-linearly separable data. To overcome these shortcomings, we present a novel similarity constrained discriminative kernel dictionary learning for action recognition. The effectiveness of the proposed method is verified on three benchmarks, and the experimental results show the promising results of our method for action recognition. |
doi_str_mv | 10.1587/transinf.2015EDL8148 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808109875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808109875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-a27922bc32015bbb1e26950b663b655069648ba64533fae4a791eac66c9501643</originalsourceid><addsrcrecordid>eNpNkE9PGzEQxa2KSg2Ub9CDj1w22Ltrr_eI8odWrNSKlrM1684Gw8YOtkOVA9-9DimhpxnNvN-T3iPkC2dTLlRzmQK4aN0wLRkXi3mneK0-kAlvalHwSvITMmEtl4USVfmJnMb4wBhXJRcT8tIhBGfdigL9add2hGDTjs68i9nVOvxN5zaakF8Okn1GeoPB4ZivJlnvIOzoEPx6TxhImEUZ6fyf4hbcI10ipG3ASAcf6NUrQW_R-JWz-_0z-TjAGPH83zwjd8vFr9nXovt-_W121RVGNCwVUDZtWfam2ufr-55jKVvBeimrXgrBZCtr1YOsRVUNgDU0LUcwUpqs4rKuzsjFwXcT_NMWY9LrHArHERz6bdRcMcVZqxqRpfVBaoKPMeCgNzl8jqk50_u29Vvb-r-2M_bjgD3EBCs8QhCSNSO-Q4u21XNdvs13i6PU3EPQ6Kq_eQaTog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808109875</pqid></control><display><type>article</type><title>Learning a Similarity Constrained Discriminative Kernel Dictionary from Concatenated Low-Rank Features for Action Recognition</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>HUANG, Shijian ; YE, Junyong ; WANG, Tongqing ; JIANG, Li ; XING, Changyuan ; LI, Yang</creator><creatorcontrib>HUANG, Shijian ; YE, Junyong ; WANG, Tongqing ; JIANG, Li ; XING, Changyuan ; LI, Yang</creatorcontrib><description>Traditional low-rank feature lose the temporal information among action sequence. To obtain the temporal information, we split an action video into multiple action subsequences and concatenate all the low-rank features of subsequences according to their time order. Then we recognize actions by learning a novel dictionary model from concatenated low-rank features. However, traditional dictionary learning models usually neglect the similarity among the coding coefficients and have bad performance in dealing with non-linearly separable data. To overcome these shortcomings, we present a novel similarity constrained discriminative kernel dictionary learning for action recognition. The effectiveness of the proposed method is verified on three benchmarks, and the experimental results show the promising results of our method for action recognition.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2015EDL8148</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>Constraints ; Dealing ; Dictionaries ; Feature recognition ; human action recognition ; kernel method ; Kernels ; Learning ; low-rank feature ; Recognition ; Similarity ; similarity constraint</subject><ispartof>IEICE Transactions on Information and Systems, 2016/02/01, Vol.E99.D(2), pp.541-544</ispartof><rights>2016 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-a27922bc32015bbb1e26950b663b655069648ba64533fae4a791eac66c9501643</citedby><cites>FETCH-LOGICAL-c570t-a27922bc32015bbb1e26950b663b655069648ba64533fae4a791eac66c9501643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>HUANG, Shijian</creatorcontrib><creatorcontrib>YE, Junyong</creatorcontrib><creatorcontrib>WANG, Tongqing</creatorcontrib><creatorcontrib>JIANG, Li</creatorcontrib><creatorcontrib>XING, Changyuan</creatorcontrib><creatorcontrib>LI, Yang</creatorcontrib><title>Learning a Similarity Constrained Discriminative Kernel Dictionary from Concatenated Low-Rank Features for Action Recognition</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>Traditional low-rank feature lose the temporal information among action sequence. To obtain the temporal information, we split an action video into multiple action subsequences and concatenate all the low-rank features of subsequences according to their time order. Then we recognize actions by learning a novel dictionary model from concatenated low-rank features. However, traditional dictionary learning models usually neglect the similarity among the coding coefficients and have bad performance in dealing with non-linearly separable data. To overcome these shortcomings, we present a novel similarity constrained discriminative kernel dictionary learning for action recognition. The effectiveness of the proposed method is verified on three benchmarks, and the experimental results show the promising results of our method for action recognition.</description><subject>Constraints</subject><subject>Dealing</subject><subject>Dictionaries</subject><subject>Feature recognition</subject><subject>human action recognition</subject><subject>kernel method</subject><subject>Kernels</subject><subject>Learning</subject><subject>low-rank feature</subject><subject>Recognition</subject><subject>Similarity</subject><subject>similarity constraint</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNkE9PGzEQxa2KSg2Ub9CDj1w22Ltrr_eI8odWrNSKlrM1684Gw8YOtkOVA9-9DimhpxnNvN-T3iPkC2dTLlRzmQK4aN0wLRkXi3mneK0-kAlvalHwSvITMmEtl4USVfmJnMb4wBhXJRcT8tIhBGfdigL9add2hGDTjs68i9nVOvxN5zaakF8Okn1GeoPB4ZivJlnvIOzoEPx6TxhImEUZ6fyf4hbcI10ipG3ASAcf6NUrQW_R-JWz-_0z-TjAGPH83zwjd8vFr9nXovt-_W121RVGNCwVUDZtWfam2ufr-55jKVvBeimrXgrBZCtr1YOsRVUNgDU0LUcwUpqs4rKuzsjFwXcT_NMWY9LrHArHERz6bdRcMcVZqxqRpfVBaoKPMeCgNzl8jqk50_u29Vvb-r-2M_bjgD3EBCs8QhCSNSO-Q4u21XNdvs13i6PU3EPQ6Kq_eQaTog</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>HUANG, Shijian</creator><creator>YE, Junyong</creator><creator>WANG, Tongqing</creator><creator>JIANG, Li</creator><creator>XING, Changyuan</creator><creator>LI, Yang</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2016</creationdate><title>Learning a Similarity Constrained Discriminative Kernel Dictionary from Concatenated Low-Rank Features for Action Recognition</title><author>HUANG, Shijian ; YE, Junyong ; WANG, Tongqing ; JIANG, Li ; XING, Changyuan ; LI, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-a27922bc32015bbb1e26950b663b655069648ba64533fae4a791eac66c9501643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Constraints</topic><topic>Dealing</topic><topic>Dictionaries</topic><topic>Feature recognition</topic><topic>human action recognition</topic><topic>kernel method</topic><topic>Kernels</topic><topic>Learning</topic><topic>low-rank feature</topic><topic>Recognition</topic><topic>Similarity</topic><topic>similarity constraint</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HUANG, Shijian</creatorcontrib><creatorcontrib>YE, Junyong</creatorcontrib><creatorcontrib>WANG, Tongqing</creatorcontrib><creatorcontrib>JIANG, Li</creatorcontrib><creatorcontrib>XING, Changyuan</creatorcontrib><creatorcontrib>LI, Yang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HUANG, Shijian</au><au>YE, Junyong</au><au>WANG, Tongqing</au><au>JIANG, Li</au><au>XING, Changyuan</au><au>LI, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning a Similarity Constrained Discriminative Kernel Dictionary from Concatenated Low-Rank Features for Action Recognition</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2016</date><risdate>2016</risdate><volume>E99.D</volume><issue>2</issue><spage>541</spage><epage>544</epage><pages>541-544</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Traditional low-rank feature lose the temporal information among action sequence. To obtain the temporal information, we split an action video into multiple action subsequences and concatenate all the low-rank features of subsequences according to their time order. Then we recognize actions by learning a novel dictionary model from concatenated low-rank features. However, traditional dictionary learning models usually neglect the similarity among the coding coefficients and have bad performance in dealing with non-linearly separable data. To overcome these shortcomings, we present a novel similarity constrained discriminative kernel dictionary learning for action recognition. The effectiveness of the proposed method is verified on three benchmarks, and the experimental results show the promising results of our method for action recognition.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2015EDL8148</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2016/02/01, Vol.E99.D(2), pp.541-544 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808109875 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | Constraints Dealing Dictionaries Feature recognition human action recognition kernel method Kernels Learning low-rank feature Recognition Similarity similarity constraint |
title | Learning a Similarity Constrained Discriminative Kernel Dictionary from Concatenated Low-Rank Features for Action Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20a%20Similarity%20Constrained%20Discriminative%20Kernel%20Dictionary%20from%20Concatenated%20Low-Rank%20Features%20for%20Action%20Recognition&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=HUANG,%20Shijian&rft.date=2016&rft.volume=E99.D&rft.issue=2&rft.spage=541&rft.epage=544&rft.pages=541-544&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2015EDL8148&rft_dat=%3Cproquest_cross%3E1808109875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808109875&rft_id=info:pmid/&rfr_iscdi=true |