Learning a Similarity Constrained Discriminative Kernel Dictionary from Concatenated Low-Rank Features for Action Recognition

Traditional low-rank feature lose the temporal information among action sequence. To obtain the temporal information, we split an action video into multiple action subsequences and concatenate all the low-rank features of subsequences according to their time order. Then we recognize actions by learn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2016/02/01, Vol.E99.D(2), pp.541-544
Hauptverfasser: HUANG, Shijian, YE, Junyong, WANG, Tongqing, JIANG, Li, XING, Changyuan, LI, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 544
container_issue 2
container_start_page 541
container_title IEICE Transactions on Information and Systems
container_volume E99.D
creator HUANG, Shijian
YE, Junyong
WANG, Tongqing
JIANG, Li
XING, Changyuan
LI, Yang
description Traditional low-rank feature lose the temporal information among action sequence. To obtain the temporal information, we split an action video into multiple action subsequences and concatenate all the low-rank features of subsequences according to their time order. Then we recognize actions by learning a novel dictionary model from concatenated low-rank features. However, traditional dictionary learning models usually neglect the similarity among the coding coefficients and have bad performance in dealing with non-linearly separable data. To overcome these shortcomings, we present a novel similarity constrained discriminative kernel dictionary learning for action recognition. The effectiveness of the proposed method is verified on three benchmarks, and the experimental results show the promising results of our method for action recognition.
doi_str_mv 10.1587/transinf.2015EDL8148
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808109875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808109875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-a27922bc32015bbb1e26950b663b655069648ba64533fae4a791eac66c9501643</originalsourceid><addsrcrecordid>eNpNkE9PGzEQxa2KSg2Ub9CDj1w22Ltrr_eI8odWrNSKlrM1684Gw8YOtkOVA9-9DimhpxnNvN-T3iPkC2dTLlRzmQK4aN0wLRkXi3mneK0-kAlvalHwSvITMmEtl4USVfmJnMb4wBhXJRcT8tIhBGfdigL9add2hGDTjs68i9nVOvxN5zaakF8Okn1GeoPB4ZivJlnvIOzoEPx6TxhImEUZ6fyf4hbcI10ipG3ASAcf6NUrQW_R-JWz-_0z-TjAGPH83zwjd8vFr9nXovt-_W121RVGNCwVUDZtWfam2ufr-55jKVvBeimrXgrBZCtr1YOsRVUNgDU0LUcwUpqs4rKuzsjFwXcT_NMWY9LrHArHERz6bdRcMcVZqxqRpfVBaoKPMeCgNzl8jqk50_u29Vvb-r-2M_bjgD3EBCs8QhCSNSO-Q4u21XNdvs13i6PU3EPQ6Kq_eQaTog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808109875</pqid></control><display><type>article</type><title>Learning a Similarity Constrained Discriminative Kernel Dictionary from Concatenated Low-Rank Features for Action Recognition</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>HUANG, Shijian ; YE, Junyong ; WANG, Tongqing ; JIANG, Li ; XING, Changyuan ; LI, Yang</creator><creatorcontrib>HUANG, Shijian ; YE, Junyong ; WANG, Tongqing ; JIANG, Li ; XING, Changyuan ; LI, Yang</creatorcontrib><description>Traditional low-rank feature lose the temporal information among action sequence. To obtain the temporal information, we split an action video into multiple action subsequences and concatenate all the low-rank features of subsequences according to their time order. Then we recognize actions by learning a novel dictionary model from concatenated low-rank features. However, traditional dictionary learning models usually neglect the similarity among the coding coefficients and have bad performance in dealing with non-linearly separable data. To overcome these shortcomings, we present a novel similarity constrained discriminative kernel dictionary learning for action recognition. The effectiveness of the proposed method is verified on three benchmarks, and the experimental results show the promising results of our method for action recognition.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2015EDL8148</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>Constraints ; Dealing ; Dictionaries ; Feature recognition ; human action recognition ; kernel method ; Kernels ; Learning ; low-rank feature ; Recognition ; Similarity ; similarity constraint</subject><ispartof>IEICE Transactions on Information and Systems, 2016/02/01, Vol.E99.D(2), pp.541-544</ispartof><rights>2016 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-a27922bc32015bbb1e26950b663b655069648ba64533fae4a791eac66c9501643</citedby><cites>FETCH-LOGICAL-c570t-a27922bc32015bbb1e26950b663b655069648ba64533fae4a791eac66c9501643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>HUANG, Shijian</creatorcontrib><creatorcontrib>YE, Junyong</creatorcontrib><creatorcontrib>WANG, Tongqing</creatorcontrib><creatorcontrib>JIANG, Li</creatorcontrib><creatorcontrib>XING, Changyuan</creatorcontrib><creatorcontrib>LI, Yang</creatorcontrib><title>Learning a Similarity Constrained Discriminative Kernel Dictionary from Concatenated Low-Rank Features for Action Recognition</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><description>Traditional low-rank feature lose the temporal information among action sequence. To obtain the temporal information, we split an action video into multiple action subsequences and concatenate all the low-rank features of subsequences according to their time order. Then we recognize actions by learning a novel dictionary model from concatenated low-rank features. However, traditional dictionary learning models usually neglect the similarity among the coding coefficients and have bad performance in dealing with non-linearly separable data. To overcome these shortcomings, we present a novel similarity constrained discriminative kernel dictionary learning for action recognition. The effectiveness of the proposed method is verified on three benchmarks, and the experimental results show the promising results of our method for action recognition.</description><subject>Constraints</subject><subject>Dealing</subject><subject>Dictionaries</subject><subject>Feature recognition</subject><subject>human action recognition</subject><subject>kernel method</subject><subject>Kernels</subject><subject>Learning</subject><subject>low-rank feature</subject><subject>Recognition</subject><subject>Similarity</subject><subject>similarity constraint</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNkE9PGzEQxa2KSg2Ub9CDj1w22Ltrr_eI8odWrNSKlrM1684Gw8YOtkOVA9-9DimhpxnNvN-T3iPkC2dTLlRzmQK4aN0wLRkXi3mneK0-kAlvalHwSvITMmEtl4USVfmJnMb4wBhXJRcT8tIhBGfdigL9add2hGDTjs68i9nVOvxN5zaakF8Okn1GeoPB4ZivJlnvIOzoEPx6TxhImEUZ6fyf4hbcI10ipG3ASAcf6NUrQW_R-JWz-_0z-TjAGPH83zwjd8vFr9nXovt-_W121RVGNCwVUDZtWfam2ufr-55jKVvBeimrXgrBZCtr1YOsRVUNgDU0LUcwUpqs4rKuzsjFwXcT_NMWY9LrHArHERz6bdRcMcVZqxqRpfVBaoKPMeCgNzl8jqk50_u29Vvb-r-2M_bjgD3EBCs8QhCSNSO-Q4u21XNdvs13i6PU3EPQ6Kq_eQaTog</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>HUANG, Shijian</creator><creator>YE, Junyong</creator><creator>WANG, Tongqing</creator><creator>JIANG, Li</creator><creator>XING, Changyuan</creator><creator>LI, Yang</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2016</creationdate><title>Learning a Similarity Constrained Discriminative Kernel Dictionary from Concatenated Low-Rank Features for Action Recognition</title><author>HUANG, Shijian ; YE, Junyong ; WANG, Tongqing ; JIANG, Li ; XING, Changyuan ; LI, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-a27922bc32015bbb1e26950b663b655069648ba64533fae4a791eac66c9501643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Constraints</topic><topic>Dealing</topic><topic>Dictionaries</topic><topic>Feature recognition</topic><topic>human action recognition</topic><topic>kernel method</topic><topic>Kernels</topic><topic>Learning</topic><topic>low-rank feature</topic><topic>Recognition</topic><topic>Similarity</topic><topic>similarity constraint</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HUANG, Shijian</creatorcontrib><creatorcontrib>YE, Junyong</creatorcontrib><creatorcontrib>WANG, Tongqing</creatorcontrib><creatorcontrib>JIANG, Li</creatorcontrib><creatorcontrib>XING, Changyuan</creatorcontrib><creatorcontrib>LI, Yang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HUANG, Shijian</au><au>YE, Junyong</au><au>WANG, Tongqing</au><au>JIANG, Li</au><au>XING, Changyuan</au><au>LI, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning a Similarity Constrained Discriminative Kernel Dictionary from Concatenated Low-Rank Features for Action Recognition</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><date>2016</date><risdate>2016</risdate><volume>E99.D</volume><issue>2</issue><spage>541</spage><epage>544</epage><pages>541-544</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Traditional low-rank feature lose the temporal information among action sequence. To obtain the temporal information, we split an action video into multiple action subsequences and concatenate all the low-rank features of subsequences according to their time order. Then we recognize actions by learning a novel dictionary model from concatenated low-rank features. However, traditional dictionary learning models usually neglect the similarity among the coding coefficients and have bad performance in dealing with non-linearly separable data. To overcome these shortcomings, we present a novel similarity constrained discriminative kernel dictionary learning for action recognition. The effectiveness of the proposed method is verified on three benchmarks, and the experimental results show the promising results of our method for action recognition.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2015EDL8148</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE Transactions on Information and Systems, 2016/02/01, Vol.E99.D(2), pp.541-544
issn 0916-8532
1745-1361
language eng
recordid cdi_proquest_miscellaneous_1808109875
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects Constraints
Dealing
Dictionaries
Feature recognition
human action recognition
kernel method
Kernels
Learning
low-rank feature
Recognition
Similarity
similarity constraint
title Learning a Similarity Constrained Discriminative Kernel Dictionary from Concatenated Low-Rank Features for Action Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20a%20Similarity%20Constrained%20Discriminative%20Kernel%20Dictionary%20from%20Concatenated%20Low-Rank%20Features%20for%20Action%20Recognition&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=HUANG,%20Shijian&rft.date=2016&rft.volume=E99.D&rft.issue=2&rft.spage=541&rft.epage=544&rft.pages=541-544&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2015EDL8148&rft_dat=%3Cproquest_cross%3E1808109875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808109875&rft_id=info:pmid/&rfr_iscdi=true