Unraveling the Mechanism of Protein Disaggregation Through a ClpB-DnaK Interaction
HSP-100 protein machines, such as ClpB, play an essential role in reactivating protein aggregates that can otherwise be lethal to cells. Although the players involved are known, including the DnaK/DnaJ/GrpE chaperone system in bacteria, details of the molecular interactions are not well understood....
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2013-03, Vol.339 (6123), p.1080-1083 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1083 |
---|---|
container_issue | 6123 |
container_start_page | 1080 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 339 |
creator | Rosenzweig, Rina Moradi, Shoeib Zarrine-Afsar, Arash Glover, John R. Kay, Lewis E. |
description | HSP-100 protein machines, such as ClpB, play an essential role in reactivating protein aggregates that can otherwise be lethal to cells. Although the players involved are known, including the DnaK/DnaJ/GrpE chaperone system in bacteria, details of the molecular interactions are not well understood. Using methyl—transverse relaxation—optimized nuclear magnetic resonance spectroscopy, we present an atomic-resolution model for the ClpB-DnaK complex, which we verified by mutagenesis and functional assays. ClpB and GrpE compete for binding to the DnaK nucleotide binding domain, with GrpE binding inhibiting disaggregation. DnaK, in turn, plays a dual role in both disaggregation and subsequent refolding of polypeptide chains as they emerge from the aggregate. On the basis of a combined structural-biochemical analysis, we propose a model for the mechanism of protein aggregate reactivation by ClpB. |
doi_str_mv | 10.1126/science.1233066 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808107148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23367359</jstor_id><sourcerecordid>23367359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-5804661b847fdd356c2d638b8ae73f1ded6f4e7c5ca72a423629b7050749eb763</originalsourceid><addsrcrecordid>eNpdkT1PwzAQhi0EoqUwM4EssbCktePEdkZo-RJFINTOkeNc0lSpXewEiX9PqgaEmG54n3t1eg6hc0rGlIZ84nUFRsOYhowRzg_QkJIkDpKQsEM0JITxQBIRD9CJ92tCuixhx2jQ0QkjCR2i96Vx6hPqypS4WQF-Ab1SpvIbbAv85mwDlcGzyquydFCqprIGL1bOtuUKKzytt7fBzKhn_GQacErv8lN0VKjaw1k_R2h5f7eYPgbz14en6c080JEUTRBLEnFOMxmJIs9ZzHWYcyYzqUCwguaQ8yICoWOtRKiikPEwyQSJiYgSyARnI3S97906-9GCb9JN5TXUtTJgW59SSSQlgkayQ6_-oWvbOtNdl1JGWUyjUIqOmuwp7az3Dop066qNcl8pJelOd9rrTnvd3cZl39tmG8h_-R-_HXCxB9a-se5vzgXrfvENYM2Ehw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313514287</pqid></control><display><type>article</type><title>Unraveling the Mechanism of Protein Disaggregation Through a ClpB-DnaK Interaction</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Rosenzweig, Rina ; Moradi, Shoeib ; Zarrine-Afsar, Arash ; Glover, John R. ; Kay, Lewis E.</creator><creatorcontrib>Rosenzweig, Rina ; Moradi, Shoeib ; Zarrine-Afsar, Arash ; Glover, John R. ; Kay, Lewis E.</creatorcontrib><description>HSP-100 protein machines, such as ClpB, play an essential role in reactivating protein aggregates that can otherwise be lethal to cells. Although the players involved are known, including the DnaK/DnaJ/GrpE chaperone system in bacteria, details of the molecular interactions are not well understood. Using methyl—transverse relaxation—optimized nuclear magnetic resonance spectroscopy, we present an atomic-resolution model for the ClpB-DnaK complex, which we verified by mutagenesis and functional assays. ClpB and GrpE compete for binding to the DnaK nucleotide binding domain, with GrpE binding inhibiting disaggregation. DnaK, in turn, plays a dual role in both disaggregation and subsequent refolding of polypeptide chains as they emerge from the aggregate. On the basis of a combined structural-biochemical analysis, we propose a model for the mechanism of protein aggregate reactivation by ClpB.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1233066</identifier><identifier>PMID: 23393091</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Adenosine triphosphatases ; Adenosine Triphosphatases - chemistry ; Adenosine Triphosphatases - genetics ; Adenosine triphosphate ; Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - metabolism ; Aggregates ; Bacteria ; Bacterial Proteins - chemistry ; Binding sites ; Biochemistry ; Cell aggregates ; Channels ; Genetic mutation ; Heat-Shock Proteins - chemistry ; Heat-Shock Proteins - genetics ; Hydrolysis ; Meningioma ; Models, Chemical ; Molecular structure ; Mutation ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Nucleotides ; Polypeptides ; Protein folding ; Protein Interaction Domains and Motifs ; Protein Interaction Maps ; Protein Multimerization ; Protein Refolding ; Protein Structure, Tertiary ; Protein Transport ; Proteins ; Quality Control ; Solubilization ; Thermus thermophilus ; Titration</subject><ispartof>Science (American Association for the Advancement of Science), 2013-03, Vol.339 (6123), p.1080-1083</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-5804661b847fdd356c2d638b8ae73f1ded6f4e7c5ca72a423629b7050749eb763</citedby><cites>FETCH-LOGICAL-c487t-5804661b847fdd356c2d638b8ae73f1ded6f4e7c5ca72a423629b7050749eb763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23367359$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23367359$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23393091$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosenzweig, Rina</creatorcontrib><creatorcontrib>Moradi, Shoeib</creatorcontrib><creatorcontrib>Zarrine-Afsar, Arash</creatorcontrib><creatorcontrib>Glover, John R.</creatorcontrib><creatorcontrib>Kay, Lewis E.</creatorcontrib><title>Unraveling the Mechanism of Protein Disaggregation Through a ClpB-DnaK Interaction</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>HSP-100 protein machines, such as ClpB, play an essential role in reactivating protein aggregates that can otherwise be lethal to cells. Although the players involved are known, including the DnaK/DnaJ/GrpE chaperone system in bacteria, details of the molecular interactions are not well understood. Using methyl—transverse relaxation—optimized nuclear magnetic resonance spectroscopy, we present an atomic-resolution model for the ClpB-DnaK complex, which we verified by mutagenesis and functional assays. ClpB and GrpE compete for binding to the DnaK nucleotide binding domain, with GrpE binding inhibiting disaggregation. DnaK, in turn, plays a dual role in both disaggregation and subsequent refolding of polypeptide chains as they emerge from the aggregate. On the basis of a combined structural-biochemical analysis, we propose a model for the mechanism of protein aggregate reactivation by ClpB.</description><subject>Adenosine triphosphatases</subject><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Aggregates</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Cell aggregates</subject><subject>Channels</subject><subject>Genetic mutation</subject><subject>Heat-Shock Proteins - chemistry</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Hydrolysis</subject><subject>Meningioma</subject><subject>Models, Chemical</subject><subject>Molecular structure</subject><subject>Mutation</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Nucleotides</subject><subject>Polypeptides</subject><subject>Protein folding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Interaction Maps</subject><subject>Protein Multimerization</subject><subject>Protein Refolding</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Quality Control</subject><subject>Solubilization</subject><subject>Thermus thermophilus</subject><subject>Titration</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkT1PwzAQhi0EoqUwM4EssbCktePEdkZo-RJFINTOkeNc0lSpXewEiX9PqgaEmG54n3t1eg6hc0rGlIZ84nUFRsOYhowRzg_QkJIkDpKQsEM0JITxQBIRD9CJ92tCuixhx2jQ0QkjCR2i96Vx6hPqypS4WQF-Ab1SpvIbbAv85mwDlcGzyquydFCqprIGL1bOtuUKKzytt7fBzKhn_GQacErv8lN0VKjaw1k_R2h5f7eYPgbz14en6c080JEUTRBLEnFOMxmJIs9ZzHWYcyYzqUCwguaQ8yICoWOtRKiikPEwyQSJiYgSyARnI3S97906-9GCb9JN5TXUtTJgW59SSSQlgkayQ6_-oWvbOtNdl1JGWUyjUIqOmuwp7az3Dop066qNcl8pJelOd9rrTnvd3cZl39tmG8h_-R-_HXCxB9a-se5vzgXrfvENYM2Ehw</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Rosenzweig, Rina</creator><creator>Moradi, Shoeib</creator><creator>Zarrine-Afsar, Arash</creator><creator>Glover, John R.</creator><creator>Kay, Lewis E.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20130301</creationdate><title>Unraveling the Mechanism of Protein Disaggregation Through a ClpB-DnaK Interaction</title><author>Rosenzweig, Rina ; Moradi, Shoeib ; Zarrine-Afsar, Arash ; Glover, John R. ; Kay, Lewis E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-5804661b847fdd356c2d638b8ae73f1ded6f4e7c5ca72a423629b7050749eb763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine triphosphatases</topic><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Aggregates</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Cell aggregates</topic><topic>Channels</topic><topic>Genetic mutation</topic><topic>Heat-Shock Proteins - chemistry</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Hydrolysis</topic><topic>Meningioma</topic><topic>Models, Chemical</topic><topic>Molecular structure</topic><topic>Mutation</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Nucleotides</topic><topic>Polypeptides</topic><topic>Protein folding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Interaction Maps</topic><topic>Protein Multimerization</topic><topic>Protein Refolding</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Quality Control</topic><topic>Solubilization</topic><topic>Thermus thermophilus</topic><topic>Titration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenzweig, Rina</creatorcontrib><creatorcontrib>Moradi, Shoeib</creatorcontrib><creatorcontrib>Zarrine-Afsar, Arash</creatorcontrib><creatorcontrib>Glover, John R.</creatorcontrib><creatorcontrib>Kay, Lewis E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenzweig, Rina</au><au>Moradi, Shoeib</au><au>Zarrine-Afsar, Arash</au><au>Glover, John R.</au><au>Kay, Lewis E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the Mechanism of Protein Disaggregation Through a ClpB-DnaK Interaction</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>339</volume><issue>6123</issue><spage>1080</spage><epage>1083</epage><pages>1080-1083</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>HSP-100 protein machines, such as ClpB, play an essential role in reactivating protein aggregates that can otherwise be lethal to cells. Although the players involved are known, including the DnaK/DnaJ/GrpE chaperone system in bacteria, details of the molecular interactions are not well understood. Using methyl—transverse relaxation—optimized nuclear magnetic resonance spectroscopy, we present an atomic-resolution model for the ClpB-DnaK complex, which we verified by mutagenesis and functional assays. ClpB and GrpE compete for binding to the DnaK nucleotide binding domain, with GrpE binding inhibiting disaggregation. DnaK, in turn, plays a dual role in both disaggregation and subsequent refolding of polypeptide chains as they emerge from the aggregate. On the basis of a combined structural-biochemical analysis, we propose a model for the mechanism of protein aggregate reactivation by ClpB.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>23393091</pmid><doi>10.1126/science.1233066</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2013-03, Vol.339 (6123), p.1080-1083 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808107148 |
source | American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE |
subjects | Adenosine triphosphatases Adenosine Triphosphatases - chemistry Adenosine Triphosphatases - genetics Adenosine triphosphate Adenosine Triphosphate - chemistry Adenosine Triphosphate - metabolism Aggregates Bacteria Bacterial Proteins - chemistry Binding sites Biochemistry Cell aggregates Channels Genetic mutation Heat-Shock Proteins - chemistry Heat-Shock Proteins - genetics Hydrolysis Meningioma Models, Chemical Molecular structure Mutation Nuclear magnetic resonance Nuclear Magnetic Resonance, Biomolecular Nucleotides Polypeptides Protein folding Protein Interaction Domains and Motifs Protein Interaction Maps Protein Multimerization Protein Refolding Protein Structure, Tertiary Protein Transport Proteins Quality Control Solubilization Thermus thermophilus Titration |
title | Unraveling the Mechanism of Protein Disaggregation Through a ClpB-DnaK Interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20Mechanism%20of%20Protein%20Disaggregation%20Through%20a%20ClpB-DnaK%20Interaction&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Rosenzweig,%20Rina&rft.date=2013-03-01&rft.volume=339&rft.issue=6123&rft.spage=1080&rft.epage=1083&rft.pages=1080-1083&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1233066&rft_dat=%3Cjstor_proqu%3E23367359%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313514287&rft_id=info:pmid/23393091&rft_jstor_id=23367359&rfr_iscdi=true |