Unraveling the Mechanism of Protein Disaggregation Through a ClpB-DnaK Interaction

HSP-100 protein machines, such as ClpB, play an essential role in reactivating protein aggregates that can otherwise be lethal to cells. Although the players involved are known, including the DnaK/DnaJ/GrpE chaperone system in bacteria, details of the molecular interactions are not well understood....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2013-03, Vol.339 (6123), p.1080-1083
Hauptverfasser: Rosenzweig, Rina, Moradi, Shoeib, Zarrine-Afsar, Arash, Glover, John R., Kay, Lewis E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1083
container_issue 6123
container_start_page 1080
container_title Science (American Association for the Advancement of Science)
container_volume 339
creator Rosenzweig, Rina
Moradi, Shoeib
Zarrine-Afsar, Arash
Glover, John R.
Kay, Lewis E.
description HSP-100 protein machines, such as ClpB, play an essential role in reactivating protein aggregates that can otherwise be lethal to cells. Although the players involved are known, including the DnaK/DnaJ/GrpE chaperone system in bacteria, details of the molecular interactions are not well understood. Using methyl—transverse relaxation—optimized nuclear magnetic resonance spectroscopy, we present an atomic-resolution model for the ClpB-DnaK complex, which we verified by mutagenesis and functional assays. ClpB and GrpE compete for binding to the DnaK nucleotide binding domain, with GrpE binding inhibiting disaggregation. DnaK, in turn, plays a dual role in both disaggregation and subsequent refolding of polypeptide chains as they emerge from the aggregate. On the basis of a combined structural-biochemical analysis, we propose a model for the mechanism of protein aggregate reactivation by ClpB.
doi_str_mv 10.1126/science.1233066
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808107148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23367359</jstor_id><sourcerecordid>23367359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-5804661b847fdd356c2d638b8ae73f1ded6f4e7c5ca72a423629b7050749eb763</originalsourceid><addsrcrecordid>eNpdkT1PwzAQhi0EoqUwM4EssbCktePEdkZo-RJFINTOkeNc0lSpXewEiX9PqgaEmG54n3t1eg6hc0rGlIZ84nUFRsOYhowRzg_QkJIkDpKQsEM0JITxQBIRD9CJ92tCuixhx2jQ0QkjCR2i96Vx6hPqypS4WQF-Ab1SpvIbbAv85mwDlcGzyquydFCqprIGL1bOtuUKKzytt7fBzKhn_GQacErv8lN0VKjaw1k_R2h5f7eYPgbz14en6c080JEUTRBLEnFOMxmJIs9ZzHWYcyYzqUCwguaQ8yICoWOtRKiikPEwyQSJiYgSyARnI3S97906-9GCb9JN5TXUtTJgW59SSSQlgkayQ6_-oWvbOtNdl1JGWUyjUIqOmuwp7az3Dop066qNcl8pJelOd9rrTnvd3cZl39tmG8h_-R-_HXCxB9a-se5vzgXrfvENYM2Ehw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313514287</pqid></control><display><type>article</type><title>Unraveling the Mechanism of Protein Disaggregation Through a ClpB-DnaK Interaction</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Rosenzweig, Rina ; Moradi, Shoeib ; Zarrine-Afsar, Arash ; Glover, John R. ; Kay, Lewis E.</creator><creatorcontrib>Rosenzweig, Rina ; Moradi, Shoeib ; Zarrine-Afsar, Arash ; Glover, John R. ; Kay, Lewis E.</creatorcontrib><description>HSP-100 protein machines, such as ClpB, play an essential role in reactivating protein aggregates that can otherwise be lethal to cells. Although the players involved are known, including the DnaK/DnaJ/GrpE chaperone system in bacteria, details of the molecular interactions are not well understood. Using methyl—transverse relaxation—optimized nuclear magnetic resonance spectroscopy, we present an atomic-resolution model for the ClpB-DnaK complex, which we verified by mutagenesis and functional assays. ClpB and GrpE compete for binding to the DnaK nucleotide binding domain, with GrpE binding inhibiting disaggregation. DnaK, in turn, plays a dual role in both disaggregation and subsequent refolding of polypeptide chains as they emerge from the aggregate. On the basis of a combined structural-biochemical analysis, we propose a model for the mechanism of protein aggregate reactivation by ClpB.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1233066</identifier><identifier>PMID: 23393091</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Adenosine triphosphatases ; Adenosine Triphosphatases - chemistry ; Adenosine Triphosphatases - genetics ; Adenosine triphosphate ; Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - metabolism ; Aggregates ; Bacteria ; Bacterial Proteins - chemistry ; Binding sites ; Biochemistry ; Cell aggregates ; Channels ; Genetic mutation ; Heat-Shock Proteins - chemistry ; Heat-Shock Proteins - genetics ; Hydrolysis ; Meningioma ; Models, Chemical ; Molecular structure ; Mutation ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Nucleotides ; Polypeptides ; Protein folding ; Protein Interaction Domains and Motifs ; Protein Interaction Maps ; Protein Multimerization ; Protein Refolding ; Protein Structure, Tertiary ; Protein Transport ; Proteins ; Quality Control ; Solubilization ; Thermus thermophilus ; Titration</subject><ispartof>Science (American Association for the Advancement of Science), 2013-03, Vol.339 (6123), p.1080-1083</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-5804661b847fdd356c2d638b8ae73f1ded6f4e7c5ca72a423629b7050749eb763</citedby><cites>FETCH-LOGICAL-c487t-5804661b847fdd356c2d638b8ae73f1ded6f4e7c5ca72a423629b7050749eb763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23367359$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23367359$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23393091$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosenzweig, Rina</creatorcontrib><creatorcontrib>Moradi, Shoeib</creatorcontrib><creatorcontrib>Zarrine-Afsar, Arash</creatorcontrib><creatorcontrib>Glover, John R.</creatorcontrib><creatorcontrib>Kay, Lewis E.</creatorcontrib><title>Unraveling the Mechanism of Protein Disaggregation Through a ClpB-DnaK Interaction</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>HSP-100 protein machines, such as ClpB, play an essential role in reactivating protein aggregates that can otherwise be lethal to cells. Although the players involved are known, including the DnaK/DnaJ/GrpE chaperone system in bacteria, details of the molecular interactions are not well understood. Using methyl—transverse relaxation—optimized nuclear magnetic resonance spectroscopy, we present an atomic-resolution model for the ClpB-DnaK complex, which we verified by mutagenesis and functional assays. ClpB and GrpE compete for binding to the DnaK nucleotide binding domain, with GrpE binding inhibiting disaggregation. DnaK, in turn, plays a dual role in both disaggregation and subsequent refolding of polypeptide chains as they emerge from the aggregate. On the basis of a combined structural-biochemical analysis, we propose a model for the mechanism of protein aggregate reactivation by ClpB.</description><subject>Adenosine triphosphatases</subject><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Aggregates</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Cell aggregates</subject><subject>Channels</subject><subject>Genetic mutation</subject><subject>Heat-Shock Proteins - chemistry</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Hydrolysis</subject><subject>Meningioma</subject><subject>Models, Chemical</subject><subject>Molecular structure</subject><subject>Mutation</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Nucleotides</subject><subject>Polypeptides</subject><subject>Protein folding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Interaction Maps</subject><subject>Protein Multimerization</subject><subject>Protein Refolding</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Quality Control</subject><subject>Solubilization</subject><subject>Thermus thermophilus</subject><subject>Titration</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkT1PwzAQhi0EoqUwM4EssbCktePEdkZo-RJFINTOkeNc0lSpXewEiX9PqgaEmG54n3t1eg6hc0rGlIZ84nUFRsOYhowRzg_QkJIkDpKQsEM0JITxQBIRD9CJ92tCuixhx2jQ0QkjCR2i96Vx6hPqypS4WQF-Ab1SpvIbbAv85mwDlcGzyquydFCqprIGL1bOtuUKKzytt7fBzKhn_GQacErv8lN0VKjaw1k_R2h5f7eYPgbz14en6c080JEUTRBLEnFOMxmJIs9ZzHWYcyYzqUCwguaQ8yICoWOtRKiikPEwyQSJiYgSyARnI3S97906-9GCb9JN5TXUtTJgW59SSSQlgkayQ6_-oWvbOtNdl1JGWUyjUIqOmuwp7az3Dop066qNcl8pJelOd9rrTnvd3cZl39tmG8h_-R-_HXCxB9a-se5vzgXrfvENYM2Ehw</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Rosenzweig, Rina</creator><creator>Moradi, Shoeib</creator><creator>Zarrine-Afsar, Arash</creator><creator>Glover, John R.</creator><creator>Kay, Lewis E.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20130301</creationdate><title>Unraveling the Mechanism of Protein Disaggregation Through a ClpB-DnaK Interaction</title><author>Rosenzweig, Rina ; Moradi, Shoeib ; Zarrine-Afsar, Arash ; Glover, John R. ; Kay, Lewis E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-5804661b847fdd356c2d638b8ae73f1ded6f4e7c5ca72a423629b7050749eb763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine triphosphatases</topic><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Aggregates</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Cell aggregates</topic><topic>Channels</topic><topic>Genetic mutation</topic><topic>Heat-Shock Proteins - chemistry</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Hydrolysis</topic><topic>Meningioma</topic><topic>Models, Chemical</topic><topic>Molecular structure</topic><topic>Mutation</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Nucleotides</topic><topic>Polypeptides</topic><topic>Protein folding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Interaction Maps</topic><topic>Protein Multimerization</topic><topic>Protein Refolding</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Quality Control</topic><topic>Solubilization</topic><topic>Thermus thermophilus</topic><topic>Titration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenzweig, Rina</creatorcontrib><creatorcontrib>Moradi, Shoeib</creatorcontrib><creatorcontrib>Zarrine-Afsar, Arash</creatorcontrib><creatorcontrib>Glover, John R.</creatorcontrib><creatorcontrib>Kay, Lewis E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenzweig, Rina</au><au>Moradi, Shoeib</au><au>Zarrine-Afsar, Arash</au><au>Glover, John R.</au><au>Kay, Lewis E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the Mechanism of Protein Disaggregation Through a ClpB-DnaK Interaction</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>339</volume><issue>6123</issue><spage>1080</spage><epage>1083</epage><pages>1080-1083</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>HSP-100 protein machines, such as ClpB, play an essential role in reactivating protein aggregates that can otherwise be lethal to cells. Although the players involved are known, including the DnaK/DnaJ/GrpE chaperone system in bacteria, details of the molecular interactions are not well understood. Using methyl—transverse relaxation—optimized nuclear magnetic resonance spectroscopy, we present an atomic-resolution model for the ClpB-DnaK complex, which we verified by mutagenesis and functional assays. ClpB and GrpE compete for binding to the DnaK nucleotide binding domain, with GrpE binding inhibiting disaggregation. DnaK, in turn, plays a dual role in both disaggregation and subsequent refolding of polypeptide chains as they emerge from the aggregate. On the basis of a combined structural-biochemical analysis, we propose a model for the mechanism of protein aggregate reactivation by ClpB.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>23393091</pmid><doi>10.1126/science.1233066</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2013-03, Vol.339 (6123), p.1080-1083
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1808107148
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Adenosine triphosphatases
Adenosine Triphosphatases - chemistry
Adenosine Triphosphatases - genetics
Adenosine triphosphate
Adenosine Triphosphate - chemistry
Adenosine Triphosphate - metabolism
Aggregates
Bacteria
Bacterial Proteins - chemistry
Binding sites
Biochemistry
Cell aggregates
Channels
Genetic mutation
Heat-Shock Proteins - chemistry
Heat-Shock Proteins - genetics
Hydrolysis
Meningioma
Models, Chemical
Molecular structure
Mutation
Nuclear magnetic resonance
Nuclear Magnetic Resonance, Biomolecular
Nucleotides
Polypeptides
Protein folding
Protein Interaction Domains and Motifs
Protein Interaction Maps
Protein Multimerization
Protein Refolding
Protein Structure, Tertiary
Protein Transport
Proteins
Quality Control
Solubilization
Thermus thermophilus
Titration
title Unraveling the Mechanism of Protein Disaggregation Through a ClpB-DnaK Interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20Mechanism%20of%20Protein%20Disaggregation%20Through%20a%20ClpB-DnaK%20Interaction&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Rosenzweig,%20Rina&rft.date=2013-03-01&rft.volume=339&rft.issue=6123&rft.spage=1080&rft.epage=1083&rft.pages=1080-1083&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1233066&rft_dat=%3Cjstor_proqu%3E23367359%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313514287&rft_id=info:pmid/23393091&rft_jstor_id=23367359&rfr_iscdi=true