Lipid Exchange Envelope Penetration (LEEP) of Nanoparticles for Plant Engineering: A Universal Localization Mechanism

Nanoparticles offer clear advantages for both passive and active penetration into biologically important membranes. However, the uptake and localization mechanism of nanoparticles within living plants, plant cells, and organelles has yet to be elucidated. Here, we examine the subcellular uptake and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2016-02, Vol.16 (2), p.1161-1172
Hauptverfasser: Wong, Min Hao, Misra, Rahul P, Giraldo, Juan P, Kwak, Seon-Yeong, Son, Youngwoo, Landry, Markita P, Swan, James W, Blankschtein, Daniel, Strano, Michael S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1172
container_issue 2
container_start_page 1161
container_title Nano letters
container_volume 16
creator Wong, Min Hao
Misra, Rahul P
Giraldo, Juan P
Kwak, Seon-Yeong
Son, Youngwoo
Landry, Markita P
Swan, James W
Blankschtein, Daniel
Strano, Michael S
description Nanoparticles offer clear advantages for both passive and active penetration into biologically important membranes. However, the uptake and localization mechanism of nanoparticles within living plants, plant cells, and organelles has yet to be elucidated. Here, we examine the subcellular uptake and kinetic trapping of a wide range of nanoparticles for the first time, using the plant chloroplast as a model system, but validated in vivo in living plants. Confocal visible and near-infrared fluorescent microscopy and single particle tracking of gold-cysteine-AF405 (GNP-Cys-AF405), streptavidin-quantum dot (SA-QD), dextran and poly­(acrylic acid) nanoceria, and various polymer-wrapped single-walled carbon nanotubes (SWCNTs), including lipid-PEG-SWCNT, chitosan-SWCNT and 30-base (dAdT) sequence of ssDNA (AT)15 wrapped SWCNTs (hereafter referred to as ss­(AT)15-SWCNT), are used to demonstrate that particle size and the magnitude, but not the sign, of the zeta potential are key in determining whether a particle is spontaneously and kinetically trapped within the organelle, despite the negative zeta potential of the envelope. We develop a mathematical model of this lipid exchange envelope and penetration (LEEP) mechanism, which agrees well with observations of this size and zeta potential dependence. The theory predicts a critical particle size below which the mechanism fails at all zeta potentials, explaining why nanoparticles are critical for this process. LEEP constitutes a powerful particulate transport and localization mechanism for nanoparticles within the plant system.
doi_str_mv 10.1021/acs.nanolett.5b04467
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808104284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808104284</sourcerecordid><originalsourceid>FETCH-LOGICAL-a493t-c8df9cdf241b9bff1c950a4a991eb3be93e39f534f39da85d7a46961d1be1c513</originalsourceid><addsrcrecordid>eNqFkTtPwzAYRS0EgvL4Bwh5LEOLHTsPs1VVeEgBOsAcOc7n4iq1g50g4NeTqoURJns4917LB6FzSqaURPRKqjC10roGum4aV4TzJN1DIxozMkmEiPZ_7xk_QschrAghgsXkEB1FSZqQKMpGqC9Ma2qcf6hXaZeAc_sOjWsBL8BC52VnnMXjIs8Xl9hp_DgMttJ3RjUQsHYeLxppuyG2NBbAG7u8xjP8Ys07-CAbXDglG_O17XmAzYoJ61N0oGUT4Gx3nqCXm_x5fjcpnm7v57NiIrlg3URltRaq1hGnlai0pkrERHIpBIWKVSAYMKFjxjUTtcziOpU8EQmtaQVUxZSdoPG2t_XurYfQlWsTFDTDm8H1oaQZySjhUcb_R9OEpyQimRhQvkWVdyF40GXrzVr6z5KScuOmHNyUP27KnZshdrFb6Ks11L-hHxkDQLbAJr5yvbfD3_zd-Q0eFZ9x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764702089</pqid></control><display><type>article</type><title>Lipid Exchange Envelope Penetration (LEEP) of Nanoparticles for Plant Engineering: A Universal Localization Mechanism</title><source>ACS Publications</source><creator>Wong, Min Hao ; Misra, Rahul P ; Giraldo, Juan P ; Kwak, Seon-Yeong ; Son, Youngwoo ; Landry, Markita P ; Swan, James W ; Blankschtein, Daniel ; Strano, Michael S</creator><creatorcontrib>Wong, Min Hao ; Misra, Rahul P ; Giraldo, Juan P ; Kwak, Seon-Yeong ; Son, Youngwoo ; Landry, Markita P ; Swan, James W ; Blankschtein, Daniel ; Strano, Michael S</creatorcontrib><description>Nanoparticles offer clear advantages for both passive and active penetration into biologically important membranes. However, the uptake and localization mechanism of nanoparticles within living plants, plant cells, and organelles has yet to be elucidated. Here, we examine the subcellular uptake and kinetic trapping of a wide range of nanoparticles for the first time, using the plant chloroplast as a model system, but validated in vivo in living plants. Confocal visible and near-infrared fluorescent microscopy and single particle tracking of gold-cysteine-AF405 (GNP-Cys-AF405), streptavidin-quantum dot (SA-QD), dextran and poly­(acrylic acid) nanoceria, and various polymer-wrapped single-walled carbon nanotubes (SWCNTs), including lipid-PEG-SWCNT, chitosan-SWCNT and 30-base (dAdT) sequence of ssDNA (AT)15 wrapped SWCNTs (hereafter referred to as ss­(AT)15-SWCNT), are used to demonstrate that particle size and the magnitude, but not the sign, of the zeta potential are key in determining whether a particle is spontaneously and kinetically trapped within the organelle, despite the negative zeta potential of the envelope. We develop a mathematical model of this lipid exchange envelope and penetration (LEEP) mechanism, which agrees well with observations of this size and zeta potential dependence. The theory predicts a critical particle size below which the mechanism fails at all zeta potentials, explaining why nanoparticles are critical for this process. LEEP constitutes a powerful particulate transport and localization mechanism for nanoparticles within the plant system.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b04467</identifier><identifier>PMID: 26760228</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Envelopes ; Exchange ; Nanoparticles ; Penetration ; Plants (organisms) ; Position (location) ; Single wall carbon nanotubes ; Zeta potential</subject><ispartof>Nano letters, 2016-02, Vol.16 (2), p.1161-1172</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a493t-c8df9cdf241b9bff1c950a4a991eb3be93e39f534f39da85d7a46961d1be1c513</citedby><cites>FETCH-LOGICAL-a493t-c8df9cdf241b9bff1c950a4a991eb3be93e39f534f39da85d7a46961d1be1c513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b04467$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.5b04467$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26760228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wong, Min Hao</creatorcontrib><creatorcontrib>Misra, Rahul P</creatorcontrib><creatorcontrib>Giraldo, Juan P</creatorcontrib><creatorcontrib>Kwak, Seon-Yeong</creatorcontrib><creatorcontrib>Son, Youngwoo</creatorcontrib><creatorcontrib>Landry, Markita P</creatorcontrib><creatorcontrib>Swan, James W</creatorcontrib><creatorcontrib>Blankschtein, Daniel</creatorcontrib><creatorcontrib>Strano, Michael S</creatorcontrib><title>Lipid Exchange Envelope Penetration (LEEP) of Nanoparticles for Plant Engineering: A Universal Localization Mechanism</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Nanoparticles offer clear advantages for both passive and active penetration into biologically important membranes. However, the uptake and localization mechanism of nanoparticles within living plants, plant cells, and organelles has yet to be elucidated. Here, we examine the subcellular uptake and kinetic trapping of a wide range of nanoparticles for the first time, using the plant chloroplast as a model system, but validated in vivo in living plants. Confocal visible and near-infrared fluorescent microscopy and single particle tracking of gold-cysteine-AF405 (GNP-Cys-AF405), streptavidin-quantum dot (SA-QD), dextran and poly­(acrylic acid) nanoceria, and various polymer-wrapped single-walled carbon nanotubes (SWCNTs), including lipid-PEG-SWCNT, chitosan-SWCNT and 30-base (dAdT) sequence of ssDNA (AT)15 wrapped SWCNTs (hereafter referred to as ss­(AT)15-SWCNT), are used to demonstrate that particle size and the magnitude, but not the sign, of the zeta potential are key in determining whether a particle is spontaneously and kinetically trapped within the organelle, despite the negative zeta potential of the envelope. We develop a mathematical model of this lipid exchange envelope and penetration (LEEP) mechanism, which agrees well with observations of this size and zeta potential dependence. The theory predicts a critical particle size below which the mechanism fails at all zeta potentials, explaining why nanoparticles are critical for this process. LEEP constitutes a powerful particulate transport and localization mechanism for nanoparticles within the plant system.</description><subject>Envelopes</subject><subject>Exchange</subject><subject>Nanoparticles</subject><subject>Penetration</subject><subject>Plants (organisms)</subject><subject>Position (location)</subject><subject>Single wall carbon nanotubes</subject><subject>Zeta potential</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPwzAYRS0EgvL4Bwh5LEOLHTsPs1VVeEgBOsAcOc7n4iq1g50g4NeTqoURJns4917LB6FzSqaURPRKqjC10roGum4aV4TzJN1DIxozMkmEiPZ_7xk_QschrAghgsXkEB1FSZqQKMpGqC9Ma2qcf6hXaZeAc_sOjWsBL8BC52VnnMXjIs8Xl9hp_DgMttJ3RjUQsHYeLxppuyG2NBbAG7u8xjP8Ys07-CAbXDglG_O17XmAzYoJ61N0oGUT4Gx3nqCXm_x5fjcpnm7v57NiIrlg3URltRaq1hGnlai0pkrERHIpBIWKVSAYMKFjxjUTtcziOpU8EQmtaQVUxZSdoPG2t_XurYfQlWsTFDTDm8H1oaQZySjhUcb_R9OEpyQimRhQvkWVdyF40GXrzVr6z5KScuOmHNyUP27KnZshdrFb6Ks11L-hHxkDQLbAJr5yvbfD3_zd-Q0eFZ9x</recordid><startdate>20160210</startdate><enddate>20160210</enddate><creator>Wong, Min Hao</creator><creator>Misra, Rahul P</creator><creator>Giraldo, Juan P</creator><creator>Kwak, Seon-Yeong</creator><creator>Son, Youngwoo</creator><creator>Landry, Markita P</creator><creator>Swan, James W</creator><creator>Blankschtein, Daniel</creator><creator>Strano, Michael S</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160210</creationdate><title>Lipid Exchange Envelope Penetration (LEEP) of Nanoparticles for Plant Engineering: A Universal Localization Mechanism</title><author>Wong, Min Hao ; Misra, Rahul P ; Giraldo, Juan P ; Kwak, Seon-Yeong ; Son, Youngwoo ; Landry, Markita P ; Swan, James W ; Blankschtein, Daniel ; Strano, Michael S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a493t-c8df9cdf241b9bff1c950a4a991eb3be93e39f534f39da85d7a46961d1be1c513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Envelopes</topic><topic>Exchange</topic><topic>Nanoparticles</topic><topic>Penetration</topic><topic>Plants (organisms)</topic><topic>Position (location)</topic><topic>Single wall carbon nanotubes</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, Min Hao</creatorcontrib><creatorcontrib>Misra, Rahul P</creatorcontrib><creatorcontrib>Giraldo, Juan P</creatorcontrib><creatorcontrib>Kwak, Seon-Yeong</creatorcontrib><creatorcontrib>Son, Youngwoo</creatorcontrib><creatorcontrib>Landry, Markita P</creatorcontrib><creatorcontrib>Swan, James W</creatorcontrib><creatorcontrib>Blankschtein, Daniel</creatorcontrib><creatorcontrib>Strano, Michael S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, Min Hao</au><au>Misra, Rahul P</au><au>Giraldo, Juan P</au><au>Kwak, Seon-Yeong</au><au>Son, Youngwoo</au><au>Landry, Markita P</au><au>Swan, James W</au><au>Blankschtein, Daniel</au><au>Strano, Michael S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipid Exchange Envelope Penetration (LEEP) of Nanoparticles for Plant Engineering: A Universal Localization Mechanism</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2016-02-10</date><risdate>2016</risdate><volume>16</volume><issue>2</issue><spage>1161</spage><epage>1172</epage><pages>1161-1172</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Nanoparticles offer clear advantages for both passive and active penetration into biologically important membranes. However, the uptake and localization mechanism of nanoparticles within living plants, plant cells, and organelles has yet to be elucidated. Here, we examine the subcellular uptake and kinetic trapping of a wide range of nanoparticles for the first time, using the plant chloroplast as a model system, but validated in vivo in living plants. Confocal visible and near-infrared fluorescent microscopy and single particle tracking of gold-cysteine-AF405 (GNP-Cys-AF405), streptavidin-quantum dot (SA-QD), dextran and poly­(acrylic acid) nanoceria, and various polymer-wrapped single-walled carbon nanotubes (SWCNTs), including lipid-PEG-SWCNT, chitosan-SWCNT and 30-base (dAdT) sequence of ssDNA (AT)15 wrapped SWCNTs (hereafter referred to as ss­(AT)15-SWCNT), are used to demonstrate that particle size and the magnitude, but not the sign, of the zeta potential are key in determining whether a particle is spontaneously and kinetically trapped within the organelle, despite the negative zeta potential of the envelope. We develop a mathematical model of this lipid exchange envelope and penetration (LEEP) mechanism, which agrees well with observations of this size and zeta potential dependence. The theory predicts a critical particle size below which the mechanism fails at all zeta potentials, explaining why nanoparticles are critical for this process. LEEP constitutes a powerful particulate transport and localization mechanism for nanoparticles within the plant system.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26760228</pmid><doi>10.1021/acs.nanolett.5b04467</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2016-02, Vol.16 (2), p.1161-1172
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1808104284
source ACS Publications
subjects Envelopes
Exchange
Nanoparticles
Penetration
Plants (organisms)
Position (location)
Single wall carbon nanotubes
Zeta potential
title Lipid Exchange Envelope Penetration (LEEP) of Nanoparticles for Plant Engineering: A Universal Localization Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipid%20Exchange%20Envelope%20Penetration%20(LEEP)%20of%20Nanoparticles%20for%20Plant%20Engineering:%20A%20Universal%20Localization%20Mechanism&rft.jtitle=Nano%20letters&rft.au=Wong,%20Min%20Hao&rft.date=2016-02-10&rft.volume=16&rft.issue=2&rft.spage=1161&rft.epage=1172&rft.pages=1161-1172&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b04467&rft_dat=%3Cproquest_cross%3E1808104284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764702089&rft_id=info:pmid/26760228&rfr_iscdi=true