Vaterite Crystals Contain Two Interspersed Crystal Structures
Calcite, aragonite, and vaterite are the three anhydrous polymorphs of calcium carbonate, in order of decreasing thermodynamic stability. Although vaterite is not commonly found in geological settings, it is an important precursor in several carbonate-forming systems and can be found in biological s...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2013-04, Vol.340 (6131), p.454-457 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 457 |
---|---|
container_issue | 6131 |
container_start_page | 454 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 340 |
creator | Kabalah-Amitai, Lee Mayzel, Boaz Kauffmann, Yaron Fitch, Andrew N. Bloch, Leonid Gilbert, Pupa U. P. A. Pokroy, Boaz |
description | Calcite, aragonite, and vaterite are the three anhydrous polymorphs of calcium carbonate, in order of decreasing thermodynamic stability. Although vaterite is not commonly found in geological settings, it is an important precursor in several carbonate-forming systems and can be found in biological settings. Because of difficulties in obtaining large, pure, single crystals, the crystal structure of vaterite has been elusive for almost a century. Using aberration-corrected high-resolution transmission electron microscopy, we found that vaterite is actually composed of at least two different crystallographic structures that coexist within a pseudo-single crystal. The major structure exhibits hexagonal symmetry; the minor structure, existing as nanodomains within the major matrix, is still unknown. |
doi_str_mv | 10.1126/science.1232139 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808101986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41942644</jstor_id><sourcerecordid>41942644</sourcerecordid><originalsourceid>FETCH-LOGICAL-a499t-d2c6fa00ad52dbc4047a706b185eabd0a88d7eed0e609a6d03378f0ce12da4a93</originalsourceid><addsrcrecordid>eNqF0c9LHDEUB_Agim7VsydlQAq9jL78mExy8CCLbQWhh6rX4W3yBmbZnVmTDGX_-0Z3VOilh5DD9_NefjzGzjhccS70dXQd9Y6uuJCCS7vHZhxsVVoBcp_NAKQuDdTVEfsS4xIgZ1YesiMhtQBQ9YzdPGOi0CUq5mEbE65iMR_6hF1fPP4Zivs-p3GTF_l3UfxOYXRpDBRP2EGbS-h02o_Z0_e7x_nP8uHXj_v57UOJytpUeuF0iwDoK-EXTuWTsQa94KYiXHhAY3xN5IE0WNQepKxNC4648KjQymP2bdd3E4aXkWJq1l10tFphT8MYG27AcODW6P9TqXRlQFuV6eU_dDmMoc8PeVOm4rU0WV3vlAtDjIHaZhO6NYZtw6F5HUIzDaGZhpArLqa-42JN_sO__3oGXyeA0eGqDdi7Ln66WmqT75fd-c4tYxrCR664VUIrJf8CLtiZbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346851738</pqid></control><display><type>article</type><title>Vaterite Crystals Contain Two Interspersed Crystal Structures</title><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Kabalah-Amitai, Lee ; Mayzel, Boaz ; Kauffmann, Yaron ; Fitch, Andrew N. ; Bloch, Leonid ; Gilbert, Pupa U. P. A. ; Pokroy, Boaz</creator><creatorcontrib>Kabalah-Amitai, Lee ; Mayzel, Boaz ; Kauffmann, Yaron ; Fitch, Andrew N. ; Bloch, Leonid ; Gilbert, Pupa U. P. A. ; Pokroy, Boaz</creatorcontrib><description>Calcite, aragonite, and vaterite are the three anhydrous polymorphs of calcium carbonate, in order of decreasing thermodynamic stability. Although vaterite is not commonly found in geological settings, it is an important precursor in several carbonate-forming systems and can be found in biological settings. Because of difficulties in obtaining large, pure, single crystals, the crystal structure of vaterite has been elusive for almost a century. Using aberration-corrected high-resolution transmission electron microscopy, we found that vaterite is actually composed of at least two different crystallographic structures that coexist within a pseudo-single crystal. The major structure exhibits hexagonal symmetry; the minor structure, existing as nanodomains within the major matrix, is still unknown.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1232139</identifier><identifier>PMID: 23620047</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Aragonite ; Biological ; Calcium ; Calcium carbonate ; Carbonates ; Condensed matter: structure, mechanical and thermal properties ; Crystal structure ; Crystallography ; Diffraction ; Electric potential ; Electron beams ; Electron diffraction ; Electronic structure ; Exact sciences and technology ; Geology ; Inorganic compounds ; Minerals ; Organisms ; Physics ; Plant spines ; Polymorphism ; Precursors ; Salts ; Single crystals ; Spots ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; Transmission electron microscopy ; Wave diffraction</subject><ispartof>Science (American Association for the Advancement of Science), 2013-04, Vol.340 (6131), p.454-457</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a499t-d2c6fa00ad52dbc4047a706b185eabd0a88d7eed0e609a6d03378f0ce12da4a93</citedby><cites>FETCH-LOGICAL-a499t-d2c6fa00ad52dbc4047a706b185eabd0a88d7eed0e609a6d03378f0ce12da4a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41942644$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41942644$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2883,2884,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27368943$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23620047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kabalah-Amitai, Lee</creatorcontrib><creatorcontrib>Mayzel, Boaz</creatorcontrib><creatorcontrib>Kauffmann, Yaron</creatorcontrib><creatorcontrib>Fitch, Andrew N.</creatorcontrib><creatorcontrib>Bloch, Leonid</creatorcontrib><creatorcontrib>Gilbert, Pupa U. P. A.</creatorcontrib><creatorcontrib>Pokroy, Boaz</creatorcontrib><title>Vaterite Crystals Contain Two Interspersed Crystal Structures</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Calcite, aragonite, and vaterite are the three anhydrous polymorphs of calcium carbonate, in order of decreasing thermodynamic stability. Although vaterite is not commonly found in geological settings, it is an important precursor in several carbonate-forming systems and can be found in biological settings. Because of difficulties in obtaining large, pure, single crystals, the crystal structure of vaterite has been elusive for almost a century. Using aberration-corrected high-resolution transmission electron microscopy, we found that vaterite is actually composed of at least two different crystallographic structures that coexist within a pseudo-single crystal. The major structure exhibits hexagonal symmetry; the minor structure, existing as nanodomains within the major matrix, is still unknown.</description><subject>Aragonite</subject><subject>Biological</subject><subject>Calcium</subject><subject>Calcium carbonate</subject><subject>Carbonates</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Diffraction</subject><subject>Electric potential</subject><subject>Electron beams</subject><subject>Electron diffraction</subject><subject>Electronic structure</subject><subject>Exact sciences and technology</subject><subject>Geology</subject><subject>Inorganic compounds</subject><subject>Minerals</subject><subject>Organisms</subject><subject>Physics</subject><subject>Plant spines</subject><subject>Polymorphism</subject><subject>Precursors</subject><subject>Salts</subject><subject>Single crystals</subject><subject>Spots</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>Transmission electron microscopy</subject><subject>Wave diffraction</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0c9LHDEUB_Agim7VsydlQAq9jL78mExy8CCLbQWhh6rX4W3yBmbZnVmTDGX_-0Z3VOilh5DD9_NefjzGzjhccS70dXQd9Y6uuJCCS7vHZhxsVVoBcp_NAKQuDdTVEfsS4xIgZ1YesiMhtQBQ9YzdPGOi0CUq5mEbE65iMR_6hF1fPP4Zivs-p3GTF_l3UfxOYXRpDBRP2EGbS-h02o_Z0_e7x_nP8uHXj_v57UOJytpUeuF0iwDoK-EXTuWTsQa94KYiXHhAY3xN5IE0WNQepKxNC4648KjQymP2bdd3E4aXkWJq1l10tFphT8MYG27AcODW6P9TqXRlQFuV6eU_dDmMoc8PeVOm4rU0WV3vlAtDjIHaZhO6NYZtw6F5HUIzDaGZhpArLqa-42JN_sO__3oGXyeA0eGqDdi7Ln66WmqT75fd-c4tYxrCR664VUIrJf8CLtiZbw</recordid><startdate>20130426</startdate><enddate>20130426</enddate><creator>Kabalah-Amitai, Lee</creator><creator>Mayzel, Boaz</creator><creator>Kauffmann, Yaron</creator><creator>Fitch, Andrew N.</creator><creator>Bloch, Leonid</creator><creator>Gilbert, Pupa U. P. A.</creator><creator>Pokroy, Boaz</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130426</creationdate><title>Vaterite Crystals Contain Two Interspersed Crystal Structures</title><author>Kabalah-Amitai, Lee ; Mayzel, Boaz ; Kauffmann, Yaron ; Fitch, Andrew N. ; Bloch, Leonid ; Gilbert, Pupa U. P. A. ; Pokroy, Boaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a499t-d2c6fa00ad52dbc4047a706b185eabd0a88d7eed0e609a6d03378f0ce12da4a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aragonite</topic><topic>Biological</topic><topic>Calcium</topic><topic>Calcium carbonate</topic><topic>Carbonates</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Diffraction</topic><topic>Electric potential</topic><topic>Electron beams</topic><topic>Electron diffraction</topic><topic>Electronic structure</topic><topic>Exact sciences and technology</topic><topic>Geology</topic><topic>Inorganic compounds</topic><topic>Minerals</topic><topic>Organisms</topic><topic>Physics</topic><topic>Plant spines</topic><topic>Polymorphism</topic><topic>Precursors</topic><topic>Salts</topic><topic>Single crystals</topic><topic>Spots</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>Transmission electron microscopy</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabalah-Amitai, Lee</creatorcontrib><creatorcontrib>Mayzel, Boaz</creatorcontrib><creatorcontrib>Kauffmann, Yaron</creatorcontrib><creatorcontrib>Fitch, Andrew N.</creatorcontrib><creatorcontrib>Bloch, Leonid</creatorcontrib><creatorcontrib>Gilbert, Pupa U. P. A.</creatorcontrib><creatorcontrib>Pokroy, Boaz</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabalah-Amitai, Lee</au><au>Mayzel, Boaz</au><au>Kauffmann, Yaron</au><au>Fitch, Andrew N.</au><au>Bloch, Leonid</au><au>Gilbert, Pupa U. P. A.</au><au>Pokroy, Boaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vaterite Crystals Contain Two Interspersed Crystal Structures</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-04-26</date><risdate>2013</risdate><volume>340</volume><issue>6131</issue><spage>454</spage><epage>457</epage><pages>454-457</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Calcite, aragonite, and vaterite are the three anhydrous polymorphs of calcium carbonate, in order of decreasing thermodynamic stability. Although vaterite is not commonly found in geological settings, it is an important precursor in several carbonate-forming systems and can be found in biological settings. Because of difficulties in obtaining large, pure, single crystals, the crystal structure of vaterite has been elusive for almost a century. Using aberration-corrected high-resolution transmission electron microscopy, we found that vaterite is actually composed of at least two different crystallographic structures that coexist within a pseudo-single crystal. The major structure exhibits hexagonal symmetry; the minor structure, existing as nanodomains within the major matrix, is still unknown.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>23620047</pmid><doi>10.1126/science.1232139</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2013-04, Vol.340 (6131), p.454-457 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808101986 |
source | JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science |
subjects | Aragonite Biological Calcium Calcium carbonate Carbonates Condensed matter: structure, mechanical and thermal properties Crystal structure Crystallography Diffraction Electric potential Electron beams Electron diffraction Electronic structure Exact sciences and technology Geology Inorganic compounds Minerals Organisms Physics Plant spines Polymorphism Precursors Salts Single crystals Spots Structure of solids and liquids crystallography Structure of specific crystalline solids Transmission electron microscopy Wave diffraction |
title | Vaterite Crystals Contain Two Interspersed Crystal Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A04%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vaterite%20Crystals%20Contain%20Two%20Interspersed%20Crystal%20Structures&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kabalah-Amitai,%20Lee&rft.date=2013-04-26&rft.volume=340&rft.issue=6131&rft.spage=454&rft.epage=457&rft.pages=454-457&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1232139&rft_dat=%3Cjstor_proqu%3E41942644%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346851738&rft_id=info:pmid/23620047&rft_jstor_id=41942644&rfr_iscdi=true |