Vaterite Crystals Contain Two Interspersed Crystal Structures

Calcite, aragonite, and vaterite are the three anhydrous polymorphs of calcium carbonate, in order of decreasing thermodynamic stability. Although vaterite is not commonly found in geological settings, it is an important precursor in several carbonate-forming systems and can be found in biological s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2013-04, Vol.340 (6131), p.454-457
Hauptverfasser: Kabalah-Amitai, Lee, Mayzel, Boaz, Kauffmann, Yaron, Fitch, Andrew N., Bloch, Leonid, Gilbert, Pupa U. P. A., Pokroy, Boaz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 457
container_issue 6131
container_start_page 454
container_title Science (American Association for the Advancement of Science)
container_volume 340
creator Kabalah-Amitai, Lee
Mayzel, Boaz
Kauffmann, Yaron
Fitch, Andrew N.
Bloch, Leonid
Gilbert, Pupa U. P. A.
Pokroy, Boaz
description Calcite, aragonite, and vaterite are the three anhydrous polymorphs of calcium carbonate, in order of decreasing thermodynamic stability. Although vaterite is not commonly found in geological settings, it is an important precursor in several carbonate-forming systems and can be found in biological settings. Because of difficulties in obtaining large, pure, single crystals, the crystal structure of vaterite has been elusive for almost a century. Using aberration-corrected high-resolution transmission electron microscopy, we found that vaterite is actually composed of at least two different crystallographic structures that coexist within a pseudo-single crystal. The major structure exhibits hexagonal symmetry; the minor structure, existing as nanodomains within the major matrix, is still unknown.
doi_str_mv 10.1126/science.1232139
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808101986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41942644</jstor_id><sourcerecordid>41942644</sourcerecordid><originalsourceid>FETCH-LOGICAL-a499t-d2c6fa00ad52dbc4047a706b185eabd0a88d7eed0e609a6d03378f0ce12da4a93</originalsourceid><addsrcrecordid>eNqF0c9LHDEUB_Agim7VsydlQAq9jL78mExy8CCLbQWhh6rX4W3yBmbZnVmTDGX_-0Z3VOilh5DD9_NefjzGzjhccS70dXQd9Y6uuJCCS7vHZhxsVVoBcp_NAKQuDdTVEfsS4xIgZ1YesiMhtQBQ9YzdPGOi0CUq5mEbE65iMR_6hF1fPP4Zivs-p3GTF_l3UfxOYXRpDBRP2EGbS-h02o_Z0_e7x_nP8uHXj_v57UOJytpUeuF0iwDoK-EXTuWTsQa94KYiXHhAY3xN5IE0WNQepKxNC4648KjQymP2bdd3E4aXkWJq1l10tFphT8MYG27AcODW6P9TqXRlQFuV6eU_dDmMoc8PeVOm4rU0WV3vlAtDjIHaZhO6NYZtw6F5HUIzDaGZhpArLqa-42JN_sO__3oGXyeA0eGqDdi7Ln66WmqT75fd-c4tYxrCR664VUIrJf8CLtiZbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346851738</pqid></control><display><type>article</type><title>Vaterite Crystals Contain Two Interspersed Crystal Structures</title><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Kabalah-Amitai, Lee ; Mayzel, Boaz ; Kauffmann, Yaron ; Fitch, Andrew N. ; Bloch, Leonid ; Gilbert, Pupa U. P. A. ; Pokroy, Boaz</creator><creatorcontrib>Kabalah-Amitai, Lee ; Mayzel, Boaz ; Kauffmann, Yaron ; Fitch, Andrew N. ; Bloch, Leonid ; Gilbert, Pupa U. P. A. ; Pokroy, Boaz</creatorcontrib><description>Calcite, aragonite, and vaterite are the three anhydrous polymorphs of calcium carbonate, in order of decreasing thermodynamic stability. Although vaterite is not commonly found in geological settings, it is an important precursor in several carbonate-forming systems and can be found in biological settings. Because of difficulties in obtaining large, pure, single crystals, the crystal structure of vaterite has been elusive for almost a century. Using aberration-corrected high-resolution transmission electron microscopy, we found that vaterite is actually composed of at least two different crystallographic structures that coexist within a pseudo-single crystal. The major structure exhibits hexagonal symmetry; the minor structure, existing as nanodomains within the major matrix, is still unknown.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1232139</identifier><identifier>PMID: 23620047</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Aragonite ; Biological ; Calcium ; Calcium carbonate ; Carbonates ; Condensed matter: structure, mechanical and thermal properties ; Crystal structure ; Crystallography ; Diffraction ; Electric potential ; Electron beams ; Electron diffraction ; Electronic structure ; Exact sciences and technology ; Geology ; Inorganic compounds ; Minerals ; Organisms ; Physics ; Plant spines ; Polymorphism ; Precursors ; Salts ; Single crystals ; Spots ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; Transmission electron microscopy ; Wave diffraction</subject><ispartof>Science (American Association for the Advancement of Science), 2013-04, Vol.340 (6131), p.454-457</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a499t-d2c6fa00ad52dbc4047a706b185eabd0a88d7eed0e609a6d03378f0ce12da4a93</citedby><cites>FETCH-LOGICAL-a499t-d2c6fa00ad52dbc4047a706b185eabd0a88d7eed0e609a6d03378f0ce12da4a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41942644$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41942644$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2883,2884,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27368943$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23620047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kabalah-Amitai, Lee</creatorcontrib><creatorcontrib>Mayzel, Boaz</creatorcontrib><creatorcontrib>Kauffmann, Yaron</creatorcontrib><creatorcontrib>Fitch, Andrew N.</creatorcontrib><creatorcontrib>Bloch, Leonid</creatorcontrib><creatorcontrib>Gilbert, Pupa U. P. A.</creatorcontrib><creatorcontrib>Pokroy, Boaz</creatorcontrib><title>Vaterite Crystals Contain Two Interspersed Crystal Structures</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Calcite, aragonite, and vaterite are the three anhydrous polymorphs of calcium carbonate, in order of decreasing thermodynamic stability. Although vaterite is not commonly found in geological settings, it is an important precursor in several carbonate-forming systems and can be found in biological settings. Because of difficulties in obtaining large, pure, single crystals, the crystal structure of vaterite has been elusive for almost a century. Using aberration-corrected high-resolution transmission electron microscopy, we found that vaterite is actually composed of at least two different crystallographic structures that coexist within a pseudo-single crystal. The major structure exhibits hexagonal symmetry; the minor structure, existing as nanodomains within the major matrix, is still unknown.</description><subject>Aragonite</subject><subject>Biological</subject><subject>Calcium</subject><subject>Calcium carbonate</subject><subject>Carbonates</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Diffraction</subject><subject>Electric potential</subject><subject>Electron beams</subject><subject>Electron diffraction</subject><subject>Electronic structure</subject><subject>Exact sciences and technology</subject><subject>Geology</subject><subject>Inorganic compounds</subject><subject>Minerals</subject><subject>Organisms</subject><subject>Physics</subject><subject>Plant spines</subject><subject>Polymorphism</subject><subject>Precursors</subject><subject>Salts</subject><subject>Single crystals</subject><subject>Spots</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>Transmission electron microscopy</subject><subject>Wave diffraction</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0c9LHDEUB_Agim7VsydlQAq9jL78mExy8CCLbQWhh6rX4W3yBmbZnVmTDGX_-0Z3VOilh5DD9_NefjzGzjhccS70dXQd9Y6uuJCCS7vHZhxsVVoBcp_NAKQuDdTVEfsS4xIgZ1YesiMhtQBQ9YzdPGOi0CUq5mEbE65iMR_6hF1fPP4Zivs-p3GTF_l3UfxOYXRpDBRP2EGbS-h02o_Z0_e7x_nP8uHXj_v57UOJytpUeuF0iwDoK-EXTuWTsQa94KYiXHhAY3xN5IE0WNQepKxNC4648KjQymP2bdd3E4aXkWJq1l10tFphT8MYG27AcODW6P9TqXRlQFuV6eU_dDmMoc8PeVOm4rU0WV3vlAtDjIHaZhO6NYZtw6F5HUIzDaGZhpArLqa-42JN_sO__3oGXyeA0eGqDdi7Ln66WmqT75fd-c4tYxrCR664VUIrJf8CLtiZbw</recordid><startdate>20130426</startdate><enddate>20130426</enddate><creator>Kabalah-Amitai, Lee</creator><creator>Mayzel, Boaz</creator><creator>Kauffmann, Yaron</creator><creator>Fitch, Andrew N.</creator><creator>Bloch, Leonid</creator><creator>Gilbert, Pupa U. P. A.</creator><creator>Pokroy, Boaz</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130426</creationdate><title>Vaterite Crystals Contain Two Interspersed Crystal Structures</title><author>Kabalah-Amitai, Lee ; Mayzel, Boaz ; Kauffmann, Yaron ; Fitch, Andrew N. ; Bloch, Leonid ; Gilbert, Pupa U. P. A. ; Pokroy, Boaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a499t-d2c6fa00ad52dbc4047a706b185eabd0a88d7eed0e609a6d03378f0ce12da4a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aragonite</topic><topic>Biological</topic><topic>Calcium</topic><topic>Calcium carbonate</topic><topic>Carbonates</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Diffraction</topic><topic>Electric potential</topic><topic>Electron beams</topic><topic>Electron diffraction</topic><topic>Electronic structure</topic><topic>Exact sciences and technology</topic><topic>Geology</topic><topic>Inorganic compounds</topic><topic>Minerals</topic><topic>Organisms</topic><topic>Physics</topic><topic>Plant spines</topic><topic>Polymorphism</topic><topic>Precursors</topic><topic>Salts</topic><topic>Single crystals</topic><topic>Spots</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>Transmission electron microscopy</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabalah-Amitai, Lee</creatorcontrib><creatorcontrib>Mayzel, Boaz</creatorcontrib><creatorcontrib>Kauffmann, Yaron</creatorcontrib><creatorcontrib>Fitch, Andrew N.</creatorcontrib><creatorcontrib>Bloch, Leonid</creatorcontrib><creatorcontrib>Gilbert, Pupa U. P. A.</creatorcontrib><creatorcontrib>Pokroy, Boaz</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabalah-Amitai, Lee</au><au>Mayzel, Boaz</au><au>Kauffmann, Yaron</au><au>Fitch, Andrew N.</au><au>Bloch, Leonid</au><au>Gilbert, Pupa U. P. A.</au><au>Pokroy, Boaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vaterite Crystals Contain Two Interspersed Crystal Structures</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-04-26</date><risdate>2013</risdate><volume>340</volume><issue>6131</issue><spage>454</spage><epage>457</epage><pages>454-457</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Calcite, aragonite, and vaterite are the three anhydrous polymorphs of calcium carbonate, in order of decreasing thermodynamic stability. Although vaterite is not commonly found in geological settings, it is an important precursor in several carbonate-forming systems and can be found in biological settings. Because of difficulties in obtaining large, pure, single crystals, the crystal structure of vaterite has been elusive for almost a century. Using aberration-corrected high-resolution transmission electron microscopy, we found that vaterite is actually composed of at least two different crystallographic structures that coexist within a pseudo-single crystal. The major structure exhibits hexagonal symmetry; the minor structure, existing as nanodomains within the major matrix, is still unknown.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>23620047</pmid><doi>10.1126/science.1232139</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2013-04, Vol.340 (6131), p.454-457
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1808101986
source JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science
subjects Aragonite
Biological
Calcium
Calcium carbonate
Carbonates
Condensed matter: structure, mechanical and thermal properties
Crystal structure
Crystallography
Diffraction
Electric potential
Electron beams
Electron diffraction
Electronic structure
Exact sciences and technology
Geology
Inorganic compounds
Minerals
Organisms
Physics
Plant spines
Polymorphism
Precursors
Salts
Single crystals
Spots
Structure of solids and liquids
crystallography
Structure of specific crystalline solids
Transmission electron microscopy
Wave diffraction
title Vaterite Crystals Contain Two Interspersed Crystal Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A04%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vaterite%20Crystals%20Contain%20Two%20Interspersed%20Crystal%20Structures&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kabalah-Amitai,%20Lee&rft.date=2013-04-26&rft.volume=340&rft.issue=6131&rft.spage=454&rft.epage=457&rft.pages=454-457&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1232139&rft_dat=%3Cjstor_proqu%3E41942644%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346851738&rft_id=info:pmid/23620047&rft_jstor_id=41942644&rfr_iscdi=true