Layer methods for stochastic Navier–Stokes equations using simplest characteristics
We propose and study a layer method for stochastic Navier–Stokes equations (SNSE) with spatial periodic boundary conditions and additive noise. The method is constructed using conditional probabilistic representations of solutions to SNSE and exploiting ideas of the weak sense numerical integration...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2016-08, Vol.302, p.1-23 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Journal of computational and applied mathematics |
container_volume | 302 |
creator | Milstein, G.N. Tretyakov, M.V. |
description | We propose and study a layer method for stochastic Navier–Stokes equations (SNSE) with spatial periodic boundary conditions and additive noise. The method is constructed using conditional probabilistic representations of solutions to SNSE and exploiting ideas of the weak sense numerical integration of stochastic differential equations. We prove some convergence results for the proposed method including its first mean-square order. Results of numerical experiments on two model problems are presented. |
doi_str_mv | 10.1016/j.cam.2016.01.051 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808099643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042716300310</els_id><sourcerecordid>1808099643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-7c2f1abe6937f417744ed82e9815a19b8c8db4b9d1162ccfeb6a228544983c8e3</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvjA-hS0iR4Em9siwohXtIKCqC2HGcCXjbrxeNFouMf-EO-BK-WmmqmuGd05zB2ArwCDu3ZvHJ2rOq8VhwqPoUdNgEldQlSql024Y2UJRe13GcHRHPOeatBTNjzzH5iLEZMr6GnYgixoBTcq6XkXXFvPzzGn6_vxxTekAp8X9vkw5KKNfnlS0F-XC2QUpGBaF3C6DccHbG9wS4Ij__mIXu-vnq6vC1nDzd3lxez0jWySaV09QC2w1Y3chC5qRDYqxq1gqkF3Smn-k50ugdoa-cG7Fpb12oqhFaNU9gcstPt3VUM7-tcxIyeHC4WdolhTQYUV1zrVjQ5Ctuoi4Eo4mBW0Y82fhrgZqPQzE1WaDYKDQeTFWbmfMtg_mFjwpDzuHTY-4gumT74f-hf-8l71w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808099643</pqid></control><display><type>article</type><title>Layer methods for stochastic Navier–Stokes equations using simplest characteristics</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Milstein, G.N. ; Tretyakov, M.V.</creator><creatorcontrib>Milstein, G.N. ; Tretyakov, M.V.</creatorcontrib><description>We propose and study a layer method for stochastic Navier–Stokes equations (SNSE) with spatial periodic boundary conditions and additive noise. The method is constructed using conditional probabilistic representations of solutions to SNSE and exploiting ideas of the weak sense numerical integration of stochastic differential equations. We prove some convergence results for the proposed method including its first mean-square order. Results of numerical experiments on two model problems are presented.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2016.01.051</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Conditional Feynman–Kac formula ; Convergence ; Differential equations ; Helmholtz–Hodge–Leray decomposition ; Mathematical analysis ; Mathematical models ; Navier-Stokes equations ; Oseen–Stokes equations ; Probability theory ; Representations ; Stochastic partial differential equations ; Stochasticity ; Weak approximation of stochastic differential equations and layer methods</subject><ispartof>Journal of computational and applied mathematics, 2016-08, Vol.302, p.1-23</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-7c2f1abe6937f417744ed82e9815a19b8c8db4b9d1162ccfeb6a228544983c8e3</citedby><cites>FETCH-LOGICAL-c373t-7c2f1abe6937f417744ed82e9815a19b8c8db4b9d1162ccfeb6a228544983c8e3</cites><orcidid>0000-0002-7929-9046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2016.01.051$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Milstein, G.N.</creatorcontrib><creatorcontrib>Tretyakov, M.V.</creatorcontrib><title>Layer methods for stochastic Navier–Stokes equations using simplest characteristics</title><title>Journal of computational and applied mathematics</title><description>We propose and study a layer method for stochastic Navier–Stokes equations (SNSE) with spatial periodic boundary conditions and additive noise. The method is constructed using conditional probabilistic representations of solutions to SNSE and exploiting ideas of the weak sense numerical integration of stochastic differential equations. We prove some convergence results for the proposed method including its first mean-square order. Results of numerical experiments on two model problems are presented.</description><subject>Conditional Feynman–Kac formula</subject><subject>Convergence</subject><subject>Differential equations</subject><subject>Helmholtz–Hodge–Leray decomposition</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Oseen–Stokes equations</subject><subject>Probability theory</subject><subject>Representations</subject><subject>Stochastic partial differential equations</subject><subject>Stochasticity</subject><subject>Weak approximation of stochastic differential equations and layer methods</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvjA-hS0iR4Em9siwohXtIKCqC2HGcCXjbrxeNFouMf-EO-BK-WmmqmuGd05zB2ArwCDu3ZvHJ2rOq8VhwqPoUdNgEldQlSql024Y2UJRe13GcHRHPOeatBTNjzzH5iLEZMr6GnYgixoBTcq6XkXXFvPzzGn6_vxxTekAp8X9vkw5KKNfnlS0F-XC2QUpGBaF3C6DccHbG9wS4Ij__mIXu-vnq6vC1nDzd3lxez0jWySaV09QC2w1Y3chC5qRDYqxq1gqkF3Smn-k50ugdoa-cG7Fpb12oqhFaNU9gcstPt3VUM7-tcxIyeHC4WdolhTQYUV1zrVjQ5Ctuoi4Eo4mBW0Y82fhrgZqPQzE1WaDYKDQeTFWbmfMtg_mFjwpDzuHTY-4gumT74f-hf-8l71w</recordid><startdate>20160815</startdate><enddate>20160815</enddate><creator>Milstein, G.N.</creator><creator>Tretyakov, M.V.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7929-9046</orcidid></search><sort><creationdate>20160815</creationdate><title>Layer methods for stochastic Navier–Stokes equations using simplest characteristics</title><author>Milstein, G.N. ; Tretyakov, M.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-7c2f1abe6937f417744ed82e9815a19b8c8db4b9d1162ccfeb6a228544983c8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Conditional Feynman–Kac formula</topic><topic>Convergence</topic><topic>Differential equations</topic><topic>Helmholtz–Hodge–Leray decomposition</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Oseen–Stokes equations</topic><topic>Probability theory</topic><topic>Representations</topic><topic>Stochastic partial differential equations</topic><topic>Stochasticity</topic><topic>Weak approximation of stochastic differential equations and layer methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milstein, G.N.</creatorcontrib><creatorcontrib>Tretyakov, M.V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milstein, G.N.</au><au>Tretyakov, M.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layer methods for stochastic Navier–Stokes equations using simplest characteristics</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2016-08-15</date><risdate>2016</risdate><volume>302</volume><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>We propose and study a layer method for stochastic Navier–Stokes equations (SNSE) with spatial periodic boundary conditions and additive noise. The method is constructed using conditional probabilistic representations of solutions to SNSE and exploiting ideas of the weak sense numerical integration of stochastic differential equations. We prove some convergence results for the proposed method including its first mean-square order. Results of numerical experiments on two model problems are presented.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2016.01.051</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-7929-9046</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2016-08, Vol.302, p.1-23 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808099643 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Conditional Feynman–Kac formula Convergence Differential equations Helmholtz–Hodge–Leray decomposition Mathematical analysis Mathematical models Navier-Stokes equations Oseen–Stokes equations Probability theory Representations Stochastic partial differential equations Stochasticity Weak approximation of stochastic differential equations and layer methods |
title | Layer methods for stochastic Navier–Stokes equations using simplest characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layer%20methods%20for%20stochastic%20Navier%E2%80%93Stokes%20equations%20using%20simplest%20characteristics&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Milstein,%20G.N.&rft.date=2016-08-15&rft.volume=302&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2016.01.051&rft_dat=%3Cproquest_cross%3E1808099643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808099643&rft_id=info:pmid/&rft_els_id=S0377042716300310&rfr_iscdi=true |