Layer methods for stochastic Navier–Stokes equations using simplest characteristics

We propose and study a layer method for stochastic Navier–Stokes equations (SNSE) with spatial periodic boundary conditions and additive noise. The method is constructed using conditional probabilistic representations of solutions to SNSE and exploiting ideas of the weak sense numerical integration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2016-08, Vol.302, p.1-23
Hauptverfasser: Milstein, G.N., Tretyakov, M.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue
container_start_page 1
container_title Journal of computational and applied mathematics
container_volume 302
creator Milstein, G.N.
Tretyakov, M.V.
description We propose and study a layer method for stochastic Navier–Stokes equations (SNSE) with spatial periodic boundary conditions and additive noise. The method is constructed using conditional probabilistic representations of solutions to SNSE and exploiting ideas of the weak sense numerical integration of stochastic differential equations. We prove some convergence results for the proposed method including its first mean-square order. Results of numerical experiments on two model problems are presented.
doi_str_mv 10.1016/j.cam.2016.01.051
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808099643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042716300310</els_id><sourcerecordid>1808099643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-7c2f1abe6937f417744ed82e9815a19b8c8db4b9d1162ccfeb6a228544983c8e3</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvjA-hS0iR4Em9siwohXtIKCqC2HGcCXjbrxeNFouMf-EO-BK-WmmqmuGd05zB2ArwCDu3ZvHJ2rOq8VhwqPoUdNgEldQlSql024Y2UJRe13GcHRHPOeatBTNjzzH5iLEZMr6GnYgixoBTcq6XkXXFvPzzGn6_vxxTekAp8X9vkw5KKNfnlS0F-XC2QUpGBaF3C6DccHbG9wS4Ij__mIXu-vnq6vC1nDzd3lxez0jWySaV09QC2w1Y3chC5qRDYqxq1gqkF3Smn-k50ugdoa-cG7Fpb12oqhFaNU9gcstPt3VUM7-tcxIyeHC4WdolhTQYUV1zrVjQ5Ctuoi4Eo4mBW0Y82fhrgZqPQzE1WaDYKDQeTFWbmfMtg_mFjwpDzuHTY-4gumT74f-hf-8l71w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808099643</pqid></control><display><type>article</type><title>Layer methods for stochastic Navier–Stokes equations using simplest characteristics</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Milstein, G.N. ; Tretyakov, M.V.</creator><creatorcontrib>Milstein, G.N. ; Tretyakov, M.V.</creatorcontrib><description>We propose and study a layer method for stochastic Navier–Stokes equations (SNSE) with spatial periodic boundary conditions and additive noise. The method is constructed using conditional probabilistic representations of solutions to SNSE and exploiting ideas of the weak sense numerical integration of stochastic differential equations. We prove some convergence results for the proposed method including its first mean-square order. Results of numerical experiments on two model problems are presented.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2016.01.051</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Conditional Feynman–Kac formula ; Convergence ; Differential equations ; Helmholtz–Hodge–Leray decomposition ; Mathematical analysis ; Mathematical models ; Navier-Stokes equations ; Oseen–Stokes equations ; Probability theory ; Representations ; Stochastic partial differential equations ; Stochasticity ; Weak approximation of stochastic differential equations and layer methods</subject><ispartof>Journal of computational and applied mathematics, 2016-08, Vol.302, p.1-23</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-7c2f1abe6937f417744ed82e9815a19b8c8db4b9d1162ccfeb6a228544983c8e3</citedby><cites>FETCH-LOGICAL-c373t-7c2f1abe6937f417744ed82e9815a19b8c8db4b9d1162ccfeb6a228544983c8e3</cites><orcidid>0000-0002-7929-9046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2016.01.051$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Milstein, G.N.</creatorcontrib><creatorcontrib>Tretyakov, M.V.</creatorcontrib><title>Layer methods for stochastic Navier–Stokes equations using simplest characteristics</title><title>Journal of computational and applied mathematics</title><description>We propose and study a layer method for stochastic Navier–Stokes equations (SNSE) with spatial periodic boundary conditions and additive noise. The method is constructed using conditional probabilistic representations of solutions to SNSE and exploiting ideas of the weak sense numerical integration of stochastic differential equations. We prove some convergence results for the proposed method including its first mean-square order. Results of numerical experiments on two model problems are presented.</description><subject>Conditional Feynman–Kac formula</subject><subject>Convergence</subject><subject>Differential equations</subject><subject>Helmholtz–Hodge–Leray decomposition</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Oseen–Stokes equations</subject><subject>Probability theory</subject><subject>Representations</subject><subject>Stochastic partial differential equations</subject><subject>Stochasticity</subject><subject>Weak approximation of stochastic differential equations and layer methods</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvjA-hS0iR4Em9siwohXtIKCqC2HGcCXjbrxeNFouMf-EO-BK-WmmqmuGd05zB2ArwCDu3ZvHJ2rOq8VhwqPoUdNgEldQlSql024Y2UJRe13GcHRHPOeatBTNjzzH5iLEZMr6GnYgixoBTcq6XkXXFvPzzGn6_vxxTekAp8X9vkw5KKNfnlS0F-XC2QUpGBaF3C6DccHbG9wS4Ij__mIXu-vnq6vC1nDzd3lxez0jWySaV09QC2w1Y3chC5qRDYqxq1gqkF3Smn-k50ugdoa-cG7Fpb12oqhFaNU9gcstPt3VUM7-tcxIyeHC4WdolhTQYUV1zrVjQ5Ctuoi4Eo4mBW0Y82fhrgZqPQzE1WaDYKDQeTFWbmfMtg_mFjwpDzuHTY-4gumT74f-hf-8l71w</recordid><startdate>20160815</startdate><enddate>20160815</enddate><creator>Milstein, G.N.</creator><creator>Tretyakov, M.V.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7929-9046</orcidid></search><sort><creationdate>20160815</creationdate><title>Layer methods for stochastic Navier–Stokes equations using simplest characteristics</title><author>Milstein, G.N. ; Tretyakov, M.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-7c2f1abe6937f417744ed82e9815a19b8c8db4b9d1162ccfeb6a228544983c8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Conditional Feynman–Kac formula</topic><topic>Convergence</topic><topic>Differential equations</topic><topic>Helmholtz–Hodge–Leray decomposition</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Oseen–Stokes equations</topic><topic>Probability theory</topic><topic>Representations</topic><topic>Stochastic partial differential equations</topic><topic>Stochasticity</topic><topic>Weak approximation of stochastic differential equations and layer methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milstein, G.N.</creatorcontrib><creatorcontrib>Tretyakov, M.V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milstein, G.N.</au><au>Tretyakov, M.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layer methods for stochastic Navier–Stokes equations using simplest characteristics</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2016-08-15</date><risdate>2016</risdate><volume>302</volume><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>We propose and study a layer method for stochastic Navier–Stokes equations (SNSE) with spatial periodic boundary conditions and additive noise. The method is constructed using conditional probabilistic representations of solutions to SNSE and exploiting ideas of the weak sense numerical integration of stochastic differential equations. We prove some convergence results for the proposed method including its first mean-square order. Results of numerical experiments on two model problems are presented.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2016.01.051</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-7929-9046</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2016-08, Vol.302, p.1-23
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_1808099643
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Conditional Feynman–Kac formula
Convergence
Differential equations
Helmholtz–Hodge–Leray decomposition
Mathematical analysis
Mathematical models
Navier-Stokes equations
Oseen–Stokes equations
Probability theory
Representations
Stochastic partial differential equations
Stochasticity
Weak approximation of stochastic differential equations and layer methods
title Layer methods for stochastic Navier–Stokes equations using simplest characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layer%20methods%20for%20stochastic%20Navier%E2%80%93Stokes%20equations%20using%20simplest%20characteristics&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Milstein,%20G.N.&rft.date=2016-08-15&rft.volume=302&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2016.01.051&rft_dat=%3Cproquest_cross%3E1808099643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808099643&rft_id=info:pmid/&rft_els_id=S0377042716300310&rfr_iscdi=true