Fatigue induced deformation and thermodynamics evolution in a nano particle strengthened nickel base superalloy
In‐situ neutron‐diffraction and temperature measurements were simultaneously applied to investigate low‐cycle‐fatigue behaviour of a nano‐precipitate strengthened nickel‐based superalloy. Two transitions in the temperature‐evolution are observed subjected to cyclic loading. Two models are compared w...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 2016-06, Vol.39 (6), p.675-685 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 685 |
---|---|
container_issue | 6 |
container_start_page | 675 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 39 |
creator | Huang, E-W. Chang, C.-K. Liaw, P. K. Suei, T.-R. |
description | In‐situ neutron‐diffraction and temperature measurements were simultaneously applied to investigate low‐cycle‐fatigue behaviour of a nano‐precipitate strengthened nickel‐based superalloy. Two transitions in the temperature‐evolution are observed subjected to cyclic loading. Two models are compared with the measured temperature evolution. One is based on bulk stress, and the other is based on lattice‐strain evolution. The calculated thermoelastic responses in both models qualitatively agree with the measured bulk‐temperature evolution for the first transition. The in‐situ neutron‐diffraction results reveal that the first transition is associated with the cyclic hardening/softening dislocation‐structural transformation. However, the second transition, which is observed at larger number of fatigue cycles during the steady cycles, does not correlate with the dislocation evolution. A phenomenological model is applied to describe the second temperature‐transition stages. The energy dissipation evolutions in the second fatigue stage indicate the initiation and the growth activities of fatigue microcrack. The data reported here may be useful for cohesive zone model. |
doi_str_mv | 10.1111/ffe.12414 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808094878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4036632621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5044-4b8810116fa97f157b1fb81eedabb1c613b7b1dda1d6f7daf8d815682ccc87fb3</originalsourceid><addsrcrecordid>eNp1kEGLFDEQhYMoOK4e_AcBL3ro3dR0OskcZdlZlWUVVlG8hHRSWbObTsakW51_b9xRD4J1Kaj3vUfxCHkK7BjanHiPx7DmwO-RFXDBurXYDPfJSslBdHJQnx6SR7XeMAaC9_2K5K2Zw_WCNCS3WHTUoc9lasecqEmOzl-wTNntk5mCrRS_5bjciaHpNJmU6c6UOdiItM4F03VzpBaUgr3FSEdTm7DssJgY8_4xeeBNrPjk9z4iH7Zn709fdRdvz1-fvrzo7MA47_ioFDAA4c1GehjkCH5UgOjMOIIV0I_t5JwBJ7x0xiunYBBqba1V0o_9EXl-yN2V_HXBOuspVIsxmoR5qRoUU2zDlVQNffYPepOXktp3GqTiAtSaiUa9OFC25FoLer0rYTJlr4HpX9XrVr2-q76xJwf2e4i4_z-ot9uzP47u4Ah1xh9_HabcaiF7OeiPl-f63ebqcrj6_EZD_xON_Jbb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784618206</pqid></control><display><type>article</type><title>Fatigue induced deformation and thermodynamics evolution in a nano particle strengthened nickel base superalloy</title><source>Access via Wiley Online Library</source><creator>Huang, E-W. ; Chang, C.-K. ; Liaw, P. K. ; Suei, T.-R.</creator><creatorcontrib>Huang, E-W. ; Chang, C.-K. ; Liaw, P. K. ; Suei, T.-R.</creatorcontrib><description>In‐situ neutron‐diffraction and temperature measurements were simultaneously applied to investigate low‐cycle‐fatigue behaviour of a nano‐precipitate strengthened nickel‐based superalloy. Two transitions in the temperature‐evolution are observed subjected to cyclic loading. Two models are compared with the measured temperature evolution. One is based on bulk stress, and the other is based on lattice‐strain evolution. The calculated thermoelastic responses in both models qualitatively agree with the measured bulk‐temperature evolution for the first transition. The in‐situ neutron‐diffraction results reveal that the first transition is associated with the cyclic hardening/softening dislocation‐structural transformation. However, the second transition, which is observed at larger number of fatigue cycles during the steady cycles, does not correlate with the dislocation evolution. A phenomenological model is applied to describe the second temperature‐transition stages. The energy dissipation evolutions in the second fatigue stage indicate the initiation and the growth activities of fatigue microcrack. The data reported here may be useful for cohesive zone model.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.12414</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>crack initiation and propagation ; crystal plasticity ; cyclic plastic deformation ; Deformation ; Dislocations ; dissipated energy ; Evolution ; Fatigue (materials) ; Mathematical models ; Metal fatigue ; Nanoparticles ; Nanostructure ; Nickel ; Nickel base alloys ; nickel base superalloy ; Softening ; Superalloys ; Temperature ; Thermodynamics</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2016-06, Vol.39 (6), p.675-685</ispartof><rights>2016 Wiley Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5044-4b8810116fa97f157b1fb81eedabb1c613b7b1dda1d6f7daf8d815682ccc87fb3</citedby><cites>FETCH-LOGICAL-c5044-4b8810116fa97f157b1fb81eedabb1c613b7b1dda1d6f7daf8d815682ccc87fb3</cites><orcidid>0000-0003-4986-0661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.12414$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.12414$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Huang, E-W.</creatorcontrib><creatorcontrib>Chang, C.-K.</creatorcontrib><creatorcontrib>Liaw, P. K.</creatorcontrib><creatorcontrib>Suei, T.-R.</creatorcontrib><title>Fatigue induced deformation and thermodynamics evolution in a nano particle strengthened nickel base superalloy</title><title>Fatigue & fracture of engineering materials & structures</title><addtitle>Fatigue Fract Engng Mater Struct</addtitle><description>In‐situ neutron‐diffraction and temperature measurements were simultaneously applied to investigate low‐cycle‐fatigue behaviour of a nano‐precipitate strengthened nickel‐based superalloy. Two transitions in the temperature‐evolution are observed subjected to cyclic loading. Two models are compared with the measured temperature evolution. One is based on bulk stress, and the other is based on lattice‐strain evolution. The calculated thermoelastic responses in both models qualitatively agree with the measured bulk‐temperature evolution for the first transition. The in‐situ neutron‐diffraction results reveal that the first transition is associated with the cyclic hardening/softening dislocation‐structural transformation. However, the second transition, which is observed at larger number of fatigue cycles during the steady cycles, does not correlate with the dislocation evolution. A phenomenological model is applied to describe the second temperature‐transition stages. The energy dissipation evolutions in the second fatigue stage indicate the initiation and the growth activities of fatigue microcrack. The data reported here may be useful for cohesive zone model.</description><subject>crack initiation and propagation</subject><subject>crystal plasticity</subject><subject>cyclic plastic deformation</subject><subject>Deformation</subject><subject>Dislocations</subject><subject>dissipated energy</subject><subject>Evolution</subject><subject>Fatigue (materials)</subject><subject>Mathematical models</subject><subject>Metal fatigue</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>nickel base superalloy</subject><subject>Softening</subject><subject>Superalloys</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEGLFDEQhYMoOK4e_AcBL3ro3dR0OskcZdlZlWUVVlG8hHRSWbObTsakW51_b9xRD4J1Kaj3vUfxCHkK7BjanHiPx7DmwO-RFXDBurXYDPfJSslBdHJQnx6SR7XeMAaC9_2K5K2Zw_WCNCS3WHTUoc9lasecqEmOzl-wTNntk5mCrRS_5bjciaHpNJmU6c6UOdiItM4F03VzpBaUgr3FSEdTm7DssJgY8_4xeeBNrPjk9z4iH7Zn709fdRdvz1-fvrzo7MA47_ioFDAA4c1GehjkCH5UgOjMOIIV0I_t5JwBJ7x0xiunYBBqba1V0o_9EXl-yN2V_HXBOuspVIsxmoR5qRoUU2zDlVQNffYPepOXktp3GqTiAtSaiUa9OFC25FoLer0rYTJlr4HpX9XrVr2-q76xJwf2e4i4_z-ot9uzP47u4Ah1xh9_HabcaiF7OeiPl-f63ebqcrj6_EZD_xON_Jbb</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Huang, E-W.</creator><creator>Chang, C.-K.</creator><creator>Liaw, P. K.</creator><creator>Suei, T.-R.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-4986-0661</orcidid></search><sort><creationdate>201606</creationdate><title>Fatigue induced deformation and thermodynamics evolution in a nano particle strengthened nickel base superalloy</title><author>Huang, E-W. ; Chang, C.-K. ; Liaw, P. K. ; Suei, T.-R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5044-4b8810116fa97f157b1fb81eedabb1c613b7b1dda1d6f7daf8d815682ccc87fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>crack initiation and propagation</topic><topic>crystal plasticity</topic><topic>cyclic plastic deformation</topic><topic>Deformation</topic><topic>Dislocations</topic><topic>dissipated energy</topic><topic>Evolution</topic><topic>Fatigue (materials)</topic><topic>Mathematical models</topic><topic>Metal fatigue</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>nickel base superalloy</topic><topic>Softening</topic><topic>Superalloys</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, E-W.</creatorcontrib><creatorcontrib>Chang, C.-K.</creatorcontrib><creatorcontrib>Liaw, P. K.</creatorcontrib><creatorcontrib>Suei, T.-R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, E-W.</au><au>Chang, C.-K.</au><au>Liaw, P. K.</au><au>Suei, T.-R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue induced deformation and thermodynamics evolution in a nano particle strengthened nickel base superalloy</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><addtitle>Fatigue Fract Engng Mater Struct</addtitle><date>2016-06</date><risdate>2016</risdate><volume>39</volume><issue>6</issue><spage>675</spage><epage>685</epage><pages>675-685</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>In‐situ neutron‐diffraction and temperature measurements were simultaneously applied to investigate low‐cycle‐fatigue behaviour of a nano‐precipitate strengthened nickel‐based superalloy. Two transitions in the temperature‐evolution are observed subjected to cyclic loading. Two models are compared with the measured temperature evolution. One is based on bulk stress, and the other is based on lattice‐strain evolution. The calculated thermoelastic responses in both models qualitatively agree with the measured bulk‐temperature evolution for the first transition. The in‐situ neutron‐diffraction results reveal that the first transition is associated with the cyclic hardening/softening dislocation‐structural transformation. However, the second transition, which is observed at larger number of fatigue cycles during the steady cycles, does not correlate with the dislocation evolution. A phenomenological model is applied to describe the second temperature‐transition stages. The energy dissipation evolutions in the second fatigue stage indicate the initiation and the growth activities of fatigue microcrack. The data reported here may be useful for cohesive zone model.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ffe.12414</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4986-0661</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2016-06, Vol.39 (6), p.675-685 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808094878 |
source | Access via Wiley Online Library |
subjects | crack initiation and propagation crystal plasticity cyclic plastic deformation Deformation Dislocations dissipated energy Evolution Fatigue (materials) Mathematical models Metal fatigue Nanoparticles Nanostructure Nickel Nickel base alloys nickel base superalloy Softening Superalloys Temperature Thermodynamics |
title | Fatigue induced deformation and thermodynamics evolution in a nano particle strengthened nickel base superalloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20induced%20deformation%20and%20thermodynamics%20evolution%20in%20a%20nano%20particle%20strengthened%20nickel%20base%20superalloy&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Huang,%20E-W.&rft.date=2016-06&rft.volume=39&rft.issue=6&rft.spage=675&rft.epage=685&rft.pages=675-685&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.12414&rft_dat=%3Cproquest_cross%3E4036632621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1784618206&rft_id=info:pmid/&rfr_iscdi=true |